An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, specifically ring theory, the notion of quasiregularity provides a computationally convenient way to work with the Jacobson radical of a ring. In this article, we primarily concern ourselves with the notion of quasiregularity for unital rings. However, one section is devoted to the theory of quasiregularity in non-unital rings, which constitutes an important aspect of noncommutative ring theory.

Property Value
dbo:abstract
  • In mathematics, specifically ring theory, the notion of quasiregularity provides a computationally convenient way to work with the Jacobson radical of a ring. In this article, we primarily concern ourselves with the notion of quasiregularity for unital rings. However, one section is devoted to the theory of quasiregularity in non-unital rings, which constitutes an important aspect of noncommutative ring theory. (en)
  • 数学、特に環論において、準正則性 (quasiregularity) の概念は環のジャコブソン根基で研究するための計算的に便利な方法を提供してくれる。直感的には、準正則性は環の元が「悪い」、つまり、望ましくない性質をもっているとはどういうことかを捉える。「悪い元」は準正則である必要があるが、準正則元はかなりあいまいな意味で「悪い」必要はない。この記事においては、主として単位的環に対して準正則性の概念を考える。しかしながら、一節は非単位的環における準正則性の理論に割かれる。これは非可換環論の重要な側面を構成する。 (ja)
  • У теорії кілець квазірегулярним елементом називається елемент кільця для якого існує так званий квазіобернений елемент. Поняття квазірегулярних елементів зокрема використовуються в означенні радикала Джекобсона. Особливо важливі вони у теорії кілець без одиниці. (uk)
dbo:wikiPageID
  • 23498248 (xsd:integer)
dbo:wikiPageLength
  • 11669 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1037484400 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, specifically ring theory, the notion of quasiregularity provides a computationally convenient way to work with the Jacobson radical of a ring. In this article, we primarily concern ourselves with the notion of quasiregularity for unital rings. However, one section is devoted to the theory of quasiregularity in non-unital rings, which constitutes an important aspect of noncommutative ring theory. (en)
  • 数学、特に環論において、準正則性 (quasiregularity) の概念は環のジャコブソン根基で研究するための計算的に便利な方法を提供してくれる。直感的には、準正則性は環の元が「悪い」、つまり、望ましくない性質をもっているとはどういうことかを捉える。「悪い元」は準正則である必要があるが、準正則元はかなりあいまいな意味で「悪い」必要はない。この記事においては、主として単位的環に対して準正則性の概念を考える。しかしながら、一節は非単位的環における準正則性の理論に割かれる。これは非可換環論の重要な側面を構成する。 (ja)
  • У теорії кілець квазірегулярним елементом називається елемент кільця для якого існує так званий квазіобернений елемент. Поняття квазірегулярних елементів зокрема використовуються в означенні радикала Джекобсона. Особливо важливі вони у теорії кілець без одиниці. (uk)
rdfs:label
  • 準正則元 (ja)
  • Quasiregular element (en)
  • Квазірегулярний елемент (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License