In mathematics, an element x of a *-algebra is normal if it satisfies This definition stems from the definition of a normal linear operator in functional analysis, where a linear operator A from a Hilbert space into itself is called unitary if where the adjoint of A is A∗ and the domain of A is the same as that of A∗. See normal operator for a detailed discussion. If the Hilbert space is finite-dimensional and an orthonormal basis has been chosen, then the operator A is normal if and only if the matrix describing A with respect to this basis is a normal matrix.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |