An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic topology, the nilpotence theorem gives a condition for an element in the homotopy groups of a ring spectrum to be nilpotent, in terms of the complex cobordism spectrum . More precisely, it states that for any ring spectrum , the kernel of the map consists of nilpotent elements. It was conjectured by Douglas Ravenel and proved by Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith.

Property Value
dbo:abstract
  • In algebraic topology, the nilpotence theorem gives a condition for an element in the homotopy groups of a ring spectrum to be nilpotent, in terms of the complex cobordism spectrum . More precisely, it states that for any ring spectrum , the kernel of the map consists of nilpotent elements. It was conjectured by Douglas Ravenel and proved by Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith. (en)
  • Inom matematiken är nilpotenssatsen ett reusltat som ger krav för ett element av av ett för att vara , i termer av . Den förmodades av ) som en del av och bevisades av ). (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 31480741 (xsd:integer)
dbo:wikiPageLength
  • 3116 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1108995773 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Douglas Ravenel (en)
  • Goro Nishida (en)
  • Michael J. Hopkins (en)
dbp:first
  • Douglas (en)
  • Michael J. (en)
  • Goro (en)
  • Ethan S. (en)
  • Jeffrey H. (en)
dbp:last
  • Smith (en)
  • Hopkins (en)
  • Nishida (en)
  • Ravenel (en)
  • Devinatz (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1973 (xsd:integer)
  • 1984 (xsd:integer)
  • 1988 (xsd:integer)
dcterms:subject
rdfs:comment
  • In algebraic topology, the nilpotence theorem gives a condition for an element in the homotopy groups of a ring spectrum to be nilpotent, in terms of the complex cobordism spectrum . More precisely, it states that for any ring spectrum , the kernel of the map consists of nilpotent elements. It was conjectured by Douglas Ravenel and proved by Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith. (en)
  • Inom matematiken är nilpotenssatsen ett reusltat som ger krav för ett element av av ett för att vara , i termer av . Den förmodades av ) som en del av och bevisades av ). (sv)
rdfs:label
  • Nilpotence theorem (en)
  • Nilpotenssatsen (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License