An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

For a homomorphism A → B of commutative rings, B is called an A-algebra of finite type if B is a finitely generated as an A-algebra. It is much stronger for B to be a finite A-algebra, which means that B is finitely generated as an A-module. For example, for any commutative ring A and natural number n, the polynomial ring A[x1, ..., xn] is an A-algebra of finite type, but it is not a finite A-module unless A = 0 or n = 0. Another example of a finite-type morphism which is not finite is .

Property Value
dbo:abstract
  • For a homomorphism A → B of commutative rings, B is called an A-algebra of finite type if B is a finitely generated as an A-algebra. It is much stronger for B to be a finite A-algebra, which means that B is finitely generated as an A-module. For example, for any commutative ring A and natural number n, the polynomial ring A[x1, ..., xn] is an A-algebra of finite type, but it is not a finite A-module unless A = 0 or n = 0. Another example of a finite-type morphism which is not finite is . The analogous notion in terms of schemes is: a morphism f: X → Y of schemes is of finite type if Y has a covering by affine open subschemes Vi = Spec Ai such that f−1(Vi) has a finite covering by affine open subschemes Uij = Spec Bij with Bij an Ai-algebra of finite type. One also says that X is of finite type over Y. For example, for any natural number n and field k, affine n-space and projective n-space over k are of finite type over k (that is, over Spec k), while they are not finite over k unless n = 0. More generally, any quasi-projective scheme over k is of finite type over k. The Noether normalization lemma says, in geometric terms, that every affine scheme X of finite type over a field k has a finite surjective morphism to affine space An over k, where n is the dimension of X. Likewise, every projective scheme X over a field has a finite surjective morphism to projective space Pn, where n is the dimension of X. (en)
dbo:wikiPageID
  • 70728366 (xsd:integer)
dbo:wikiPageLength
  • 2274 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1092495364 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • For a homomorphism A → B of commutative rings, B is called an A-algebra of finite type if B is a finitely generated as an A-algebra. It is much stronger for B to be a finite A-algebra, which means that B is finitely generated as an A-module. For example, for any commutative ring A and natural number n, the polynomial ring A[x1, ..., xn] is an A-algebra of finite type, but it is not a finite A-module unless A = 0 or n = 0. Another example of a finite-type morphism which is not finite is . (en)
rdfs:label
  • Morphism of finite type (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License