| dbo:abstract | 
	Im mathematischen Teilgebiet der Funktionalanalysis ist das Minkowski-Funktional (nach Hermann Minkowski), oft auch Eichfunktional genannt, eine Verallgemeinerung des Normbegriffes. (de)En géométrie, la notion de jauge généralise celle de semi-norme. À toute partie C d'un ℝ-espace vectoriel E on associe sa jauge, ou fonctionnelle de Minkowski pC, qui est une application de E dans [0, +∞] mesurant, pour chaque vecteur, par quel rapport il faut dilater C pour englober ce vecteur. Dès que C contient l'origine, pC est positivement homogène ; si C est étoilée par rapport à 0, pC possède d'autres propriétés élémentaires. Si C est convexe — cas le plus souvent étudié — pC est même sous-linéaire, mais elle n'est pas nécessairement symétrique et elle peut prendre des valeurs infinies. Sous certaines hypothèses supplémentaires, pC est une semi-norme dont C est la boule unité. Cette notion intervient en analyse fonctionnelle (démonstration de la forme analytique du théorème de Hahn-Banach), en optimisation (problème de recouvrement par jauge, optimisation conique), en apprentissage automatique, en géométrie des nombres (second théorème de Minkowski), etc. Dans tout cet article, E désigne un espace vectoriel réel, qu'on supposera topologique chaque fois que nécessaire. (fr)In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space. If is a subset of a real or complex vector space then the Minkowski functional or gauge of is defined to be the function valued in the extended real numbers, defined by where the infimum of the empty set is defined to be positive infinity (which is not a real number so that would then not be real-valued). The Minkowski function is always non-negative (meaning ) and is a real number if and only if is not empty. This property of being nonnegative stands in contrast to other classes of functions, such as sublinear functions and real linear functionals, that do allow negative values. In functional analysis, is usually assumed to have properties (such as being absorbing in for instance) that will guarantee that for every this set is not empty precisely because this results in being real-valued. Moreover, is also often assumed to have more properties, such as being an absorbing disk in since these properties guarantee that will be a (real-valued) seminorm on In fact, every seminorm on is equal to the Minkowski functional of any subset of satisfying (where all three of these sets are necessarily absorbing in and the first and last are also disks). Thus every seminorm (which is a function defined by purely algebraic properties) can be associated (non-uniquely) with an absorbing disk (which is a set with certain geometric properties) and conversely, every absorbing disk can be associated with its Minkowski functional (which will necessarily be a seminorm). These relationships between seminorms, Minkowski functionals, and absorbing disks is a major reason why Minkowski functionals are studied and used in functional analysis. In particular, through these relationships, Minkowski functionals allow one to "translate" certain geometric properties of a subset of into certain algebraic properties of a function on (en)数学の関数解析学の分野におけるミンコフスキー汎関数(ミンコフスキーはんかんすう、英: Minkowski functional)とは、線型空間上に距離の概念をもたらすような関数のことである。 K を、線型空間 V に含まれる対称な凸体とする。V 上の関数 p を によって定める(ただしこの右辺が well-defined である場合)。 (ja)In matematica, in particolare in analisi funzionale, un funzionale di Minkowski è una funzione che richiama il concetto di distanza tipico degli spazi vettoriali. (it)Em matemática, sobretudo na análise funcional, um funcional de Minkowski faz uma interpretação geométrica dos funcionais norma e semi-norma. (pt)Funkcjonał Minkowskiego – i dodatnio jednorodny funkcjonał związany z i wypukłymi podzbiorami przestrzeni liniowej. (pl)У функціональному аналізі функціонал Мінковського використовує лінійну структуру простору для введення топології на ньому. Названий на честь німецького математика Германа Мінковського. (uk)Функционал Минковского — функционал, использующий линейную структуру пространства для введения топологии на нём. Назван по имени немецкого математика Германа Минковского. (ru)度規函數是數學的一個重要函數。設為或上的向量空間,有需要時可以假設為拓撲向量空間。設為在內的凸集,且包含原點。那麼的度規函數是從到的函數,定義為 , 如果為空集,定義。 從定義立刻得到以下結果,可以進一步說明度規函數: 
* 若是在中的開集,那麼; 
* 若是在中的閉集,那麼。 (zh) | 
| dbo:thumbnail |  | 
| dbo:wikiPageExternalLink |  | 
| dbo:wikiPageID |  | 
| dbo:wikiPageLength | 
	41758 (xsd:nonNegativeInteger) | 
| dbo:wikiPageRevisionID |  | 
| dbo:wikiPageWikiLink |  | 
| dbp:left |  | 
| dbp:mathStatement | 
	Assume that  is an absorbing subset of 
It is shown that: 
# If  is convex then  is subadditive.
# If  is balanced then  is absolutely homogeneous; that is,  for all scalars (en)If  is a convex, balanced, and absorbing subset of a real or complex vector space  then  is a seminorm on (en)Let  be any function. 
The following statements are equivalent: 
Strict positive homogeneity:  for all  and all  real 
* This statement is equivalent to:  for all  and all positive real 
 is a Minkowski functional; that is, there exists a subset  such that 
 where 
 where 
Moreover, if  never takes on the value   then this list may be extended to include: 
Positive homogeneity/Nonnegative homogeneity:  for all  and all  real (en)Let  be any function and  be any subset. 
The following statements are equivalent: 
 is  positive homogeneous,  and 
 is the Minkowski functional of  ,  contains the origin, and  is star-shaped at the origin.
* The set  is star-shaped at the origin if and only if  whenever  and  A set that is star-shaped at the origin is sometimes called a . (en)Suppose that  is a topological vector space  over the real or complex numbers. 
Then the non-empty open convex subsets of  are exactly those sets that are of the form  for some  and some positive continuous sublinear function  on (en)Let  be a subset of a real or complex vector space  
Then  is a seminorm on  if and only if all of the following conditions hold:
 ;
 is convex;
* It suffices  for  to be convex.
 for all unit scalars 
* This condition is satisfied if  is balanced or more generally if  for all unit scalars 
in which case  and both  and  will be convex, balanced, and absorbing subsets of  
Conversely, if  is a seminorm on  then the set  satisfies all three of the above conditions  and also  
moreover,  is necessarily convex, balanced, absorbing, and satisfies (en)If  is an absorbing disk in a vector space  then the Minkowski functional of  which is the map  defined by
is a seminorm on 
Moreover, (en)Suppose that  is a subset of a real or complex vector space  
Strict positive homogeneity:  for all  and all  real 
* Positive/Nonnegative homogeneity:  is nonnegative homogeneous if and only if  is real-valued.
Real-values:  is the set of all points on which  is real valued. So  is real-valued if and only if  in which case 
* Value at :  if and only if  if and only if 
* Null space: If  then  if and only if  if and only if there exists a divergent sequence of positive real numbers  such that  for all  Moreover, 
Comparison to a constant: If  then for any   this can be restated as: If  then 
* Thus if  then  where the set on the right hand side denotes  and not its subset  If  then these sets are equal if and only if  contains  
* In particular, if  then  but importantly, the converse is not necessarily true. 
Gauge comparison: For any subset   thus  if and only if  
* The set  satisfies  so replacing  with  will not change the resulting Minkowski functional. The same is true of  and of 
* If  then  and  has the particularly nice property that if  is real then  if and only if  or  Moreover, if  is real then  if and only if 
Subadditive/Triangle inequality:  is subadditive if and only if  is convex. If  is convex then so are both  and  and moreover,  is subadditive.
Scaling the set: If  is a scalar then  for all  
Thus if  is real then 
Absolute homogeneity:  for all  and all unit length scalars  if and only if  for all unit length scalars  in which case  for all  and all  scalars  If in addition  is also real-valued then this holds for  scalars  .
*  for all unit length  if and only if  for all unit length 
*  for all unit scalars  if and only if  for all unit scalars  if this is the case then  for all unit scalars 
*  is symmetric  if and only if  which happens if and only if 
* The Minkowski functional of any balanced set is a balanced function. 
Absorbing: If  is convex  balanced and if  then  is absorbing in 
* If a set  is absorbing in  and  then  is absorbing in 
* If  is convex and  then  in which case 
Restriction to a vector subspace: If  is a vector subspace of  and if  denotes the Minkowski functional of  on  then  where  denotes the restriction of  to (en) | 
| dbp:name | 
	Summary (en)Theorem (en)Corollary (en)Proposition (en) | 
| dbp:title | 
	Proof (en)Proof that the Gauge of an absorbing disk is a seminorm (en) | 
| dbp:wikiPageUsesTemplate |  | 
| dct:subject |  | 
| rdf:type |  | 
| rdfs:comment | 
	Im mathematischen Teilgebiet der Funktionalanalysis ist das Minkowski-Funktional (nach Hermann Minkowski), oft auch Eichfunktional genannt, eine Verallgemeinerung des Normbegriffes. (de)数学の関数解析学の分野におけるミンコフスキー汎関数(ミンコフスキーはんかんすう、英: Minkowski functional)とは、線型空間上に距離の概念をもたらすような関数のことである。 K を、線型空間 V に含まれる対称な凸体とする。V 上の関数 p を によって定める(ただしこの右辺が well-defined である場合)。 (ja)In matematica, in particolare in analisi funzionale, un funzionale di Minkowski è una funzione che richiama il concetto di distanza tipico degli spazi vettoriali. (it)Em matemática, sobretudo na análise funcional, um funcional de Minkowski faz uma interpretação geométrica dos funcionais norma e semi-norma. (pt)Funkcjonał Minkowskiego – i dodatnio jednorodny funkcjonał związany z i wypukłymi podzbiorami przestrzeni liniowej. (pl)У функціональному аналізі функціонал Мінковського використовує лінійну структуру простору для введення топології на ньому. Названий на честь німецького математика Германа Мінковського. (uk)Функционал Минковского — функционал, использующий линейную структуру пространства для введения топологии на нём. Назван по имени немецкого математика Германа Минковского. (ru)度規函數是數學的一個重要函數。設為或上的向量空間,有需要時可以假設為拓撲向量空間。設為在內的凸集,且包含原點。那麼的度規函數是從到的函數,定義為 , 如果為空集,定義。 從定義立刻得到以下結果,可以進一步說明度規函數: 
* 若是在中的開集,那麼; 
* 若是在中的閉集,那麼。 (zh)In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space. If is a subset of a real or complex vector space then the Minkowski functional or gauge of is defined to be the function valued in the extended real numbers, defined by In functional analysis, is usually assumed to have properties (such as being absorbing in for instance) that will guarantee that for every this set is not empty precisely because this results in being real-valued. (en)En géométrie, la notion de jauge généralise celle de semi-norme. À toute partie C d'un ℝ-espace vectoriel E on associe sa jauge, ou fonctionnelle de Minkowski pC, qui est une application de E dans [0, +∞] mesurant, pour chaque vecteur, par quel rapport il faut dilater C pour englober ce vecteur. Dès que C contient l'origine, pC est positivement homogène ; si C est étoilée par rapport à 0, pC possède d'autres propriétés élémentaires. Si C est convexe — cas le plus souvent étudié — pC est même sous-linéaire, mais elle n'est pas nécessairement symétrique et elle peut prendre des valeurs infinies. Sous certaines hypothèses supplémentaires, pC est une semi-norme dont C est la boule unité. (fr) | 
| rdfs:label | 
	Minkowski-Funktional (de)Fonctionnelle de Minkowski (fr)Funzionale di Minkowski (it)ミンコフスキー汎関数 (ja)Minkowski functional (en)Funkcjonał Minkowskiego (pl)Функционал Минковского (ru)Funcional de Minkowski (pt)Функціонал Мінковського (uk)度規函數 (zh) | 
| owl:sameAs |  | 
| prov:wasDerivedFrom |  | 
| foaf:depiction |  | 
| foaf:isPrimaryTopicOf |  | 
| is dbo:wikiPageDisambiguates
 of |  | 
| is dbo:wikiPageRedirects
 of |  | 
| is dbo:wikiPageWikiLink
 of |  | 
| is foaf:primaryTopic
 of |  |