An Entity of Type: Function113783816, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Kontorovich–Lebedev transform is an integral transform which uses a Macdonald function (modified Bessel function of the second kind) with imaginary index as its kernel. Unlike other Bessel function transforms, such as the Hankel transform, this transform involves integrating over the index of the function rather than its argument. The transform of a function ƒ(x) and its inverse (provided they exist) are given below: Laguerre previously studied a similar transform regarding Laguerre function as:

Property Value
dbo:abstract
  • In mathematics, the Kontorovich–Lebedev transform is an integral transform which uses a Macdonald function (modified Bessel function of the second kind) with imaginary index as its kernel. Unlike other Bessel function transforms, such as the Hankel transform, this transform involves integrating over the index of the function rather than its argument. The transform of a function ƒ(x) and its inverse (provided they exist) are given below: Laguerre previously studied a similar transform regarding Laguerre function as: Erdélyi et al., for instance, contains a short list of Kontorovich–Lebedev transforms as well references to the original work of Kontorovich and Lebedev in the late 1930s. This transform is mostly used in solving the Laplace equation in cylindrical coordinates for wedge shaped domains by the method of separation of variables. (en)
  • Преобразование Конторовича — Лебедева — интегральное преобразование, задаваемое для функции формулой: где — функция Макдональда. Обратное преобразование имеет вид: Впервые данное преобразование было рассмотрено М. И. Конторовичем и Н. Н. Лебедевым в 1938 году. (ru)
dbo:wikiPageID
  • 3379186 (xsd:integer)
dbo:wikiPageLength
  • 1752 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 919848509 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • k/k120090 (en)
dbp:title
  • Kontorovich–Lebedev transform (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Преобразование Конторовича — Лебедева — интегральное преобразование, задаваемое для функции формулой: где — функция Макдональда. Обратное преобразование имеет вид: Впервые данное преобразование было рассмотрено М. И. Конторовичем и Н. Н. Лебедевым в 1938 году. (ru)
  • In mathematics, the Kontorovich–Lebedev transform is an integral transform which uses a Macdonald function (modified Bessel function of the second kind) with imaginary index as its kernel. Unlike other Bessel function transforms, such as the Hankel transform, this transform involves integrating over the index of the function rather than its argument. The transform of a function ƒ(x) and its inverse (provided they exist) are given below: Laguerre previously studied a similar transform regarding Laguerre function as: (en)
rdfs:label
  • Kontorovich–Lebedev transform (en)
  • Преобразование Конторовича — Лебедева (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License