An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, for a Lie group , the Kirillov orbit method gives a heuristic method in representation theory. It connects the Fourier transforms of coadjoint orbits, which lie in the dual space of the Lie algebra of G, to the infinitesimal characters of the irreducible representations. The method got its name after the Russian mathematician Alexandre Kirillov. The Kirillov orbit method has led to a number of important developments in Lie theory, including the Duflo isomorphism and the .

Property Value
dbo:abstract
  • In mathematics, for a Lie group , the Kirillov orbit method gives a heuristic method in representation theory. It connects the Fourier transforms of coadjoint orbits, which lie in the dual space of the Lie algebra of G, to the infinitesimal characters of the irreducible representations. The method got its name after the Russian mathematician Alexandre Kirillov. At its simplest, it states that a character of a Lie group may be given by the Fourier transform of the Dirac delta function supported on the coadjoint orbits, weighted by the square-root of the Jacobian of the exponential map, denoted by . It does not apply to all Lie groups, but works for a number of classes of connected Lie groups, including nilpotent, some semisimple groups, and compact groups. The Kirillov orbit method has led to a number of important developments in Lie theory, including the Duflo isomorphism and the . (en)
dbo:wikiPageID
  • 3769761 (xsd:integer)
dbo:wikiPageLength
  • 3223 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 962248356 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
rdfs:comment
  • In mathematics, for a Lie group , the Kirillov orbit method gives a heuristic method in representation theory. It connects the Fourier transforms of coadjoint orbits, which lie in the dual space of the Lie algebra of G, to the infinitesimal characters of the irreducible representations. The method got its name after the Russian mathematician Alexandre Kirillov. The Kirillov orbit method has led to a number of important developments in Lie theory, including the Duflo isomorphism and the . (en)
rdfs:label
  • Kirillov character formula (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License