An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, more specifically non-commutative ring theory, modern algebra, and module theory, the Jacobson density theorem is a theorem concerning simple modules over a ring R. The theorem can be applied to show that any primitive ring can be viewed as a "dense" subring of the ring of linear transformations of a vector space. This theorem first appeared in the literature in 1945, in the famous paper "Structure Theory of Simple Rings Without Finiteness Assumptions" by Nathan Jacobson. This can be viewed as a kind of generalization of the Artin-Wedderburn theorem's conclusion about the structure of simple Artinian rings.

Property Value
dbo:abstract
  • Der Dichtheitssatz von Jacobson, benannt nach Nathan Jacobson, ist ein mathematischer Satz aus der Darstellungstheorie mit Anwendungen in der Ringtheorie und Gruppentheorie. Er wurde erstmals 1945 von Jacobson bewiesen und stellt eine enge Beziehung zwischen gewissen Ringen und Matrizenringen über Schiefkörpern her. (de)
  • In mathematics, more specifically non-commutative ring theory, modern algebra, and module theory, the Jacobson density theorem is a theorem concerning simple modules over a ring R. The theorem can be applied to show that any primitive ring can be viewed as a "dense" subring of the ring of linear transformations of a vector space. This theorem first appeared in the literature in 1945, in the famous paper "Structure Theory of Simple Rings Without Finiteness Assumptions" by Nathan Jacobson. This can be viewed as a kind of generalization of the Artin-Wedderburn theorem's conclusion about the structure of simple Artinian rings. (en)
  • В абстрактній алгебрі теорема Джекобсона про щільність є важливим результатом про властивості некомутативних кілець та модулів над ними. Теорема має застосування у теорії представлень груп та загальній теорії груп. Названа на честь американського математика Натана Джекобсона. (uk)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 488391 (xsd:integer)
dbo:wikiPageLength
  • 8734 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1077983141 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Der Dichtheitssatz von Jacobson, benannt nach Nathan Jacobson, ist ein mathematischer Satz aus der Darstellungstheorie mit Anwendungen in der Ringtheorie und Gruppentheorie. Er wurde erstmals 1945 von Jacobson bewiesen und stellt eine enge Beziehung zwischen gewissen Ringen und Matrizenringen über Schiefkörpern her. (de)
  • In mathematics, more specifically non-commutative ring theory, modern algebra, and module theory, the Jacobson density theorem is a theorem concerning simple modules over a ring R. The theorem can be applied to show that any primitive ring can be viewed as a "dense" subring of the ring of linear transformations of a vector space. This theorem first appeared in the literature in 1945, in the famous paper "Structure Theory of Simple Rings Without Finiteness Assumptions" by Nathan Jacobson. This can be viewed as a kind of generalization of the Artin-Wedderburn theorem's conclusion about the structure of simple Artinian rings. (en)
  • В абстрактній алгебрі теорема Джекобсона про щільність є важливим результатом про властивості некомутативних кілець та модулів над ними. Теорема має застосування у теорії представлень груп та загальній теорії груп. Названа на честь американського математика Натана Джекобсона. (uk)
rdfs:label
  • Dichtheitssatz von Jacobson (de)
  • Jacobson density theorem (en)
  • Теорема Джекобсона про щільність (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License