In mathematics, a Følner sequence for a group is a sequence of sets satisfying a particular condition. If a group has a Følner sequence with respect to its action on itself, the group is amenable. A more general notion of Følner nets can be defined analogously, and is suited for the study of uncountable groups. Følner sequences are named for Erling Følner.
| Property | Value |
|---|---|
| dbo:abstract |
|
| dbo:wikiPageExternalLink | |
| dbo:wikiPageID |
|
| dbo:wikiPageLength |
|
| dbo:wikiPageRevisionID |
|
| dbo:wikiPageWikiLink |
|
| dbp:wikiPageUsesTemplate | |
| dcterms:subject | |
| gold:hypernym | |
| rdfs:comment |
|
| rdfs:label |
|
| owl:sameAs | |
| prov:wasDerivedFrom | |
| foaf:isPrimaryTopicOf | |
| is dbo:knownFor of | |
| is dbo:wikiPageRedirects of | |
| is dbo:wikiPageWikiLink of | |
| is foaf:primaryTopic of |