An Entity of Type: Class107997703, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In number theory, a full reptend prime, full repetend prime, proper prime or long prime in base b is an odd prime number p such that the Fermat quotient (where p does not divide b) gives a cyclic number. Therefore, the base b expansion of repeats the digits of the corresponding cyclic number infinitely, as does that of with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ordp b = p − 1, which is equivalent to b being a primitive root modulo p.

Property Value
dbo:abstract
  • In der Zahlentheorie ist eine lange Primzahl zur Basis b eine Primzahl , für welche gilt: * ist eine natürliche Zahl, sodass kein Teiler von ist * ist eine zyklische Zahl. Der Ausdruck lange Primzahl (vom englischen long prime, aber auch full reptend prime, full repetend prime bzw. proper prime) wurde erstmals von John Horton Conway und Richard Kenneth Guy in ihrem Buch The Book of Numbers erwähnt. (de)
  • In number theory, a full reptend prime, full repetend prime, proper prime or long prime in base b is an odd prime number p such that the Fermat quotient (where p does not divide b) gives a cyclic number. Therefore, the base b expansion of repeats the digits of the corresponding cyclic number infinitely, as does that of with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ordp b = p − 1, which is equivalent to b being a primitive root modulo p. The term "long prime" was used by John Conway and Richard Guy in their Book of Numbers. Confusingly, Sloane's OEIS refers to these primes as "cyclic numbers". (en)
  • En arithmétique, un nombre premier long est un nombre premier p tel que dans une base donnée b non divisible par p, l'entier soit cyclique. Une manière équivalente de définir que p est un nombre premier long dans la base b est de dire que le groupe (ℤ/pℤ)× admet b comme générateur. Sauf mention explicite, la base b considérée est la base dix. (fr)
  • En teoría de números, un número primo largo, (o también primo repetitivo completo, o primo propio)​ en base b, es un número primo impar p tal que el cociente de Fermat (donde p no divide a b) genera un número cíclico. Por lo tanto, la expansión en base b de repite infinitamente los dígitos del número cíclico correspondiente, al igual que con la rotación de los dígitos para cualquier a entre 1 y p − 1. El número cíclico correspondiente al primo p poseerá p − 1 dígitos si y solo si p es un número primo largo. Es decir, el orden multiplicativo ordp b = p − 1, lo que equivale a que b cumpla el ser una raíz primitiva módulo p. El término primo largo fue utilizado por John Conway y Richard Guy en su "Libro de los Números". De manera confusa, Sloane de OEIS se refiere a estos números primos como números cíclicos. (es)
  • 在數論中,全循環質數又名長質數是指一個質數p,使分數1/p的循環節長度比質數少1,更精確地說,全循環質數是指一個質數p,在一個已知底數為b的進位制下,在下面算式中可以得出一個循環數的質數 若p為23,b為17,所得的數字0C9A5F8ED52G476B1823BE為循環數 0C9A5F8ED52G476B1823BE × 1 = 0C9A5F8ED52G476B1823BE0C9A5F8ED52G476B1823BE × 2 = 1823BE0C9A5F8ED52G476B0C9A5F8ED52G476B1823BE × 3 = 23BE0C9A5F8ED52G476B180C9A5F8ED52G476B1823BE × 4 = 2G476B1823BE0C9A5F8ED50C9A5F8ED52G476B1823BE × 5 = 3BE0C9A5F8ED52G476B1820C9A5F8ED52G476B1823BE × 6 = 476B1823BE0C9A5F8ED52G0C9A5F8ED52G476B1823BE × 7 = 52G476B1823BE0C9A5F8ED0C9A5F8ED52G476B1823BE × 8 = 5F8ED52G476B1823BE0C9A0C9A5F8ED52G476B1823BE × 9 = 6B1823BE0C9A5F8ED52G470C9A5F8ED52G476B1823BE × A = 76B1823BE0C9A5F8ED52G40C9A5F8ED52G476B1823BE × B = 823BE0C9A5F8ED52G476B10C9A5F8ED52G476B1823BE × C = 8ED52G476B1823BE0C9A5F0C9A5F8ED52G476B1823BE × D = 9A5F8ED52G476B1823BE0C0C9A5F8ED52G476B1823BE × E = A5F8ED52G476B1823BE0C90C9A5F8ED52G476B1823BE × F = B1823BE0C9A5F8ED52G4760C9A5F8ED52G476B1823BE × G = BE0C9A5F8ED52G476B18230C9A5F8ED52G476B1823BE × 10 = C9A5F8ED52G476B1823BE00C9A5F8ED52G476B1823BE × 11 = D52G476B1823BE0C9A5F8E0C9A5F8ED52G476B1823BE × 12 = E0C9A5F8ED52G476B1823B0C9A5F8ED52G476B1823BE × 13 = ED52G476B1823BE0C9A5F80C9A5F8ED52G476B1823BE × 14 = F8ED52G476B1823BE0C9A50C9A5F8ED52G476B1823BE × 15 = G476B1823BE0C9A5F8ED52 而,循環節長度為22,比23少1,因此23為全循環質數 十進位中的全循環質數有: 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593,... (OEIS數列) (zh)
dbo:wikiPageID
  • 2673943 (xsd:integer)
dbo:wikiPageLength
  • 26095 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1120795302 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Artin's Constant (en)
  • Full Reptend Prime (en)
dbp:urlname
  • ArtinsConstant (en)
  • FullReptendPrime (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In der Zahlentheorie ist eine lange Primzahl zur Basis b eine Primzahl , für welche gilt: * ist eine natürliche Zahl, sodass kein Teiler von ist * ist eine zyklische Zahl. Der Ausdruck lange Primzahl (vom englischen long prime, aber auch full reptend prime, full repetend prime bzw. proper prime) wurde erstmals von John Horton Conway und Richard Kenneth Guy in ihrem Buch The Book of Numbers erwähnt. (de)
  • En arithmétique, un nombre premier long est un nombre premier p tel que dans une base donnée b non divisible par p, l'entier soit cyclique. Une manière équivalente de définir que p est un nombre premier long dans la base b est de dire que le groupe (ℤ/pℤ)× admet b comme générateur. Sauf mention explicite, la base b considérée est la base dix. (fr)
  • In number theory, a full reptend prime, full repetend prime, proper prime or long prime in base b is an odd prime number p such that the Fermat quotient (where p does not divide b) gives a cyclic number. Therefore, the base b expansion of repeats the digits of the corresponding cyclic number infinitely, as does that of with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ordp b = p − 1, which is equivalent to b being a primitive root modulo p. (en)
  • En teoría de números, un número primo largo, (o también primo repetitivo completo, o primo propio)​ en base b, es un número primo impar p tal que el cociente de Fermat (donde p no divide a b) genera un número cíclico. Por lo tanto, la expansión en base b de repite infinitamente los dígitos del número cíclico correspondiente, al igual que con la rotación de los dígitos para cualquier a entre 1 y p − 1. El número cíclico correspondiente al primo p poseerá p − 1 dígitos si y solo si p es un número primo largo. Es decir, el orden multiplicativo ordp b = p − 1, lo que equivale a que b cumpla el ser una raíz primitiva módulo p. (es)
  • 在數論中,全循環質數又名長質數是指一個質數p,使分數1/p的循環節長度比質數少1,更精確地說,全循環質數是指一個質數p,在一個已知底數為b的進位制下,在下面算式中可以得出一個循環數的質數 若p為23,b為17,所得的數字0C9A5F8ED52G476B1823BE為循環數 0C9A5F8ED52G476B1823BE × 1 = 0C9A5F8ED52G476B1823BE0C9A5F8ED52G476B1823BE × 2 = 1823BE0C9A5F8ED52G476B0C9A5F8ED52G476B1823BE × 3 = 23BE0C9A5F8ED52G476B180C9A5F8ED52G476B1823BE × 4 = 2G476B1823BE0C9A5F8ED50C9A5F8ED52G476B1823BE × 5 = 3BE0C9A5F8ED52G476B1820C9A5F8ED52G476B1823BE × 6 = 476B1823BE0C9A5F8ED52G0C9A5F8ED52G476B1823BE × 7 = 52G476B1823BE0C9A5F8ED0C9A5F8ED52G476B1823BE × 8 = 5F8ED52G476B1823BE0C9A0C9A5F8ED52G476B1823BE × 9 = 6B1823BE0C9A5F8ED52G470C9A5F8ED52G476B1823BE × A = 76B1823BE0C9A5F8ED52G40C9A5F8ED52G476B1823BE × B = 823BE0C9A5F8ED52G476B10C9A5F8ED52G476B1823BE × C = 8ED52G476B1823BE0C9A5F0C9A5F8ED52G476B1823BE × D = 9A5F8ED52G476B1823BE0C (zh)
rdfs:label
  • Lange Primzahl (de)
  • Número primo largo (es)
  • Full reptend prime (en)
  • Nombre premier long (fr)
  • 全循環質數 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License