About: Dual object

An Entity of Type: Class107997703, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.

Property Value
dbo:abstract
  • In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property. A category in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the category of all vector spaces is not. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5560194 (xsd:integer)
dbo:wikiPageLength
  • 8831 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1110696080 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property. (en)
rdfs:label
  • Dual object (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License