dbo:abstract
|
- In 5-dimensional geometry, the 5-cube 5-orthoplex compound is a polytope compound composed of a regular 5-cube and dual regular 5-orthoplex. A compound polytope is a figure that is composed of several polytopes sharing a common center. The outer vertices of a compound can be connected to form a convex polytope called the convex hull. The compound is a facetting of the convex hull. In 5-polytope compounds constructed as dual pairs, the hypercells and vertices swap positions and cells and edges swap positions. Because of this the number of hypercells and vertices are equal, as are cells and edges. Mid-edges of the 5-cube cross mid-cell in the 16-cell, and vice versa. It can be seen as the 5-dimensional analogue of a compound of cube and octahedron. (en)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3479 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In 5-dimensional geometry, the 5-cube 5-orthoplex compound is a polytope compound composed of a regular 5-cube and dual regular 5-orthoplex. A compound polytope is a figure that is composed of several polytopes sharing a common center. The outer vertices of a compound can be connected to form a convex polytope called the convex hull. The compound is a facetting of the convex hull. It can be seen as the 5-dimensional analogue of a compound of cube and octahedron. (en)
|
rdfs:label
|
- Compound of 5-cube and 5-orthoplex (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |