An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the bounded inverse theorem (or inverse mapping theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem.

Property Value
dbo:abstract
  • In mathematics, the bounded inverse theorem (or inverse mapping theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem. (en)
  • 数学の分野における有界逆写像定理(ゆうかいぎゃくしゃぞうていり、英語: Bounded inverse theorem)は、バナッハ空間上の有界線形作用素の理論における一つの結果で、あるバナッハ空間から別のバナッハ空間への全単射な有界線形作用素 T には有界な逆 T−1 が存在する、ということを述べた定理である。開写像定理や閉グラフ定理と同値である。 ここで考える空間はバナッハ空間でなければならない。反例として、ゼロでない成分が有限個であるような数列 x : N → R からなる空間 X を考える(そのノルムは上限ノルムで与えられるものとする)。作用素 T : X → X を で定義すると、これは有界、線形、可逆であるが T−1 は非有界となる。しかしこれは有界逆写像定理とは矛盾しない。なぜならば X は完備でなく、したがってバナッハ空間ではないからである。実際に完備でないことを確かめるために、 によって与えられる数列 x(n) ∈ X からなる列を考える。それは n → ∞ に対して数列 へと収束するが、この(無限個の)全ての成分がゼロでないため、これは X には含まれない。したがって X は完備ではない。 X の完備化は、ゼロに収束するような全ての数列からなる空間 である(この空間は、全ての有界数列からなるようなℓp空間 ℓ∞(N) の(閉)部分空間である)。この場合、作用素 T が全射でなく、したがって全単射ではない。このことを確かめるための簡単な例を挙げる。数列 は の元であるが、 の値域には含まれない。したがって T は全射ではない。 (ja)
  • Теорема Банаха об обратном операторе — один из трёх основных принципов «банаховой» теории линейных операторов (два других — теорема Хана — Банаха и принцип равномерной ограниченности). (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12365444 (xsd:integer)
dbo:wikiPageLength
  • 3754 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119699536 (xsd:integer)
dbo:wikiPageWikiLink
dbp:mathStatement
  • If is a continuous linear bijection from a complete pseudometrizable topological vector space onto a Hausdorff TVS that is a Baire space, then is a homeomorphism . (en)
dbp:name
  • Theorem (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, the bounded inverse theorem (or inverse mapping theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem. (en)
  • Теорема Банаха об обратном операторе — один из трёх основных принципов «банаховой» теории линейных операторов (два других — теорема Хана — Банаха и принцип равномерной ограниченности). (ru)
  • 数学の分野における有界逆写像定理(ゆうかいぎゃくしゃぞうていり、英語: Bounded inverse theorem)は、バナッハ空間上の有界線形作用素の理論における一つの結果で、あるバナッハ空間から別のバナッハ空間への全単射な有界線形作用素 T には有界な逆 T−1 が存在する、ということを述べた定理である。開写像定理や閉グラフ定理と同値である。 ここで考える空間はバナッハ空間でなければならない。反例として、ゼロでない成分が有限個であるような数列 x : N → R からなる空間 X を考える(そのノルムは上限ノルムで与えられるものとする)。作用素 T : X → X を で定義すると、これは有界、線形、可逆であるが T−1 は非有界となる。しかしこれは有界逆写像定理とは矛盾しない。なぜならば X は完備でなく、したがってバナッハ空間ではないからである。実際に完備でないことを確かめるために、 によって与えられる数列 x(n) ∈ X からなる列を考える。それは n → ∞ に対して数列 へと収束するが、この(無限個の)全ての成分がゼロでないため、これは X には含まれない。したがって X は完備ではない。 は の元であるが、 の値域には含まれない。したがって T は全射ではない。 (ja)
rdfs:label
  • Bounded inverse theorem (en)
  • 有界逆写像定理 (ja)
  • Теорема Банаха об обратном операторе (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License