dbo:abstract
|
- In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Michael Atiyah and Friedrich Hirzebruch in the special case of topological K-theory. For a CW complex and a generalized cohomology theory , it relates the generalized cohomology groups with 'ordinary' cohomology groups with coefficients in the generalized cohomology of a point. More precisely, the term of the spectral sequence is , and the spectral sequence converges conditionally to . Atiyah and Hirzebruch pointed out a generalization of their spectral sequence that also generalizes the Serre spectral sequence, and reduces to it in the case where . It can be derived from an exact couple that gives the page of the Serre spectral sequence, except with the ordinary cohomology groups replaced with . In detail, assume to be the total space of a Serre fibration with fibre and base space . The filtration of by its -skeletons gives rise to a filtration of . There is a corresponding spectral sequence with term and converging to the associated graded ring of the filtered ring . This is the Atiyah–Hirzebruch spectral sequence in the case where the fibre is a point. (en)
- Inom matematiken är Atiyah–Hirzebruchs spektralföljd en som används för att beräkna , införd av ) i specialfallet topologisk K-teori. För ett X ger den ett samband mellan de generaliserade kohomolgigrupperna hi(X) och vanliga kohomologigrupper H j med koefficienter i den generaliserade kohomologin för en punkt. (sv)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9369 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:authorlink
|
- Friedrich Hirzebruch (en)
- Michael Atiyah (en)
|
dbp:first
|
- Michael (en)
- Friedrich (en)
|
dbp:last
|
- Atiyah (en)
- Hirzebruch (en)
|
dbp:wikiPageUsesTemplate
| |
dbp:year
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- Inom matematiken är Atiyah–Hirzebruchs spektralföljd en som används för att beräkna , införd av ) i specialfallet topologisk K-teori. För ett X ger den ett samband mellan de generaliserade kohomolgigrupperna hi(X) och vanliga kohomologigrupper H j med koefficienter i den generaliserade kohomologin för en punkt. (sv)
- In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Michael Atiyah and Friedrich Hirzebruch in the special case of topological K-theory. For a CW complex and a generalized cohomology theory , it relates the generalized cohomology groups with 'ordinary' cohomology groups with coefficients in the generalized cohomology of a point. More precisely, the term of the spectral sequence is , and the spectral sequence converges conditionally to . and converging to the associated graded ring of the filtered ring . (en)
|
rdfs:label
|
- Atiyah–Hirzebruch spectral sequence (en)
- Atiyah–Hirzebruchs spektralföljd (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |