An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Michael Atiyah and Friedrich Hirzebruch in the special case of topological K-theory. For a CW complex and a generalized cohomology theory , it relates the generalized cohomology groups with 'ordinary' cohomology groups with coefficients in the generalized cohomology of a point. More precisely, the term of the spectral sequence is , and the spectral sequence converges conditionally to . and converging to the associated graded ring of the filtered ring .

Property Value
dbo:abstract
  • In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Michael Atiyah and Friedrich Hirzebruch in the special case of topological K-theory. For a CW complex and a generalized cohomology theory , it relates the generalized cohomology groups with 'ordinary' cohomology groups with coefficients in the generalized cohomology of a point. More precisely, the term of the spectral sequence is , and the spectral sequence converges conditionally to . Atiyah and Hirzebruch pointed out a generalization of their spectral sequence that also generalizes the Serre spectral sequence, and reduces to it in the case where . It can be derived from an exact couple that gives the page of the Serre spectral sequence, except with the ordinary cohomology groups replaced with . In detail, assume to be the total space of a Serre fibration with fibre and base space . The filtration of by its -skeletons gives rise to a filtration of . There is a corresponding spectral sequence with term and converging to the associated graded ring of the filtered ring . This is the Atiyah–Hirzebruch spectral sequence in the case where the fibre is a point. (en)
  • Inom matematiken är Atiyah–Hirzebruchs spektralföljd en som används för att beräkna , införd av ) i specialfallet topologisk K-teori. För ett X ger den ett samband mellan de generaliserade kohomolgigrupperna hi(X) och vanliga kohomologigrupper H j med koefficienter i den generaliserade kohomologin för en punkt. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 6795342 (xsd:integer)
dbo:wikiPageLength
  • 9369 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1113053880 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Friedrich Hirzebruch (en)
  • Michael Atiyah (en)
dbp:first
  • Michael (en)
  • Friedrich (en)
dbp:last
  • Atiyah (en)
  • Hirzebruch (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1961 (xsd:integer)
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Inom matematiken är Atiyah–Hirzebruchs spektralföljd en som används för att beräkna , införd av ) i specialfallet topologisk K-teori. För ett X ger den ett samband mellan de generaliserade kohomolgigrupperna hi(X) och vanliga kohomologigrupper H j med koefficienter i den generaliserade kohomologin för en punkt. (sv)
  • In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Michael Atiyah and Friedrich Hirzebruch in the special case of topological K-theory. For a CW complex and a generalized cohomology theory , it relates the generalized cohomology groups with 'ordinary' cohomology groups with coefficients in the generalized cohomology of a point. More precisely, the term of the spectral sequence is , and the spectral sequence converges conditionally to . and converging to the associated graded ring of the filtered ring . (en)
rdfs:label
  • Atiyah–Hirzebruch spectral sequence (en)
  • Atiyah–Hirzebruchs spektralföljd (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License