About: Assembly map

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, assembly maps are an important concept in geometric topology. From the homotopy-theoretical viewpoint, an assembly map is a universal approximation of a homotopy invariant functor by a homology theory from the left. From the geometric viewpoint, assembly maps correspond to 'assemble' local data over a parameter space together to get global data. Assembly maps for algebraic K-theory and L-theory play a central role in the topology of high-dimensional manifolds, since their homotopy fibers have a direct geometric

Property Value
dbo:abstract
  • In mathematics, assembly maps are an important concept in geometric topology. From the homotopy-theoretical viewpoint, an assembly map is a universal approximation of a homotopy invariant functor by a homology theory from the left. From the geometric viewpoint, assembly maps correspond to 'assemble' local data over a parameter space together to get global data. Assembly maps for algebraic K-theory and L-theory play a central role in the topology of high-dimensional manifolds, since their homotopy fibers have a direct geometric (en)
dbo:wikiPageID
  • 21311179 (xsd:integer)
dbo:wikiPageLength
  • 5429 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1079550420 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In mathematics, assembly maps are an important concept in geometric topology. From the homotopy-theoretical viewpoint, an assembly map is a universal approximation of a homotopy invariant functor by a homology theory from the left. From the geometric viewpoint, assembly maps correspond to 'assemble' local data over a parameter space together to get global data. Assembly maps for algebraic K-theory and L-theory play a central role in the topology of high-dimensional manifolds, since their homotopy fibers have a direct geometric (en)
rdfs:label
  • Assembly map (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License