An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor (which is mainly determined by mass). However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

Property Value
dbo:abstract
  • Die Beschleunigung in der speziellen Relativitätstheorie (SRT) ist, wie in der Newtonschen Mechanik, die Ableitung der Geschwindigkeit nach der Zeit. Da in der SRT jedes Inertialsystem seine eigene Uhr mitführt, es also keine absolute Zeit gibt, folgen daraus komplexere Definitionen der Beschleunigung. Die SRT als Theorie der flachen Minkowski-Raumzeit ist also durchaus in der Lage, beschleunigte Bewegungen zu beschreiben, entgegen einer häufigen Fehlannahme. (de)
  • Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor (which is mainly determined by mass). However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators. One can derive transformation formulas for ordinary accelerations in three spatial dimensions (three-acceleration or coordinate acceleration) as measured in an external inertial frame of reference, as well as for the special case of proper acceleration measured by a comoving accelerometer. Another useful formalism is four-acceleration, as its components can be connected in different inertial frames by a Lorentz transformation. Also equations of motion can be formulated which connect acceleration and force. Equations for several forms of acceleration of bodies and their curved world lines follow from these formulas by integration. Well known special cases are hyperbolic motion for constant longitudinal proper acceleration or uniform circular motion. Eventually, it is also possible to describe these phenomena in accelerated frames in the context of special relativity, see Proper reference frame (flat spacetime). In such frames, effects arise which are analogous to homogeneous gravitational fields, which have some formal similarities to the real, inhomogeneous gravitational fields of curved spacetime in general relativity. In the case of hyperbolic motion one can use Rindler coordinates, in the case of uniform circular motion one can use Born coordinates. Concerning the historical development, relativistic equations containing accelerations can already be found in the early years of relativity, as summarized in early textbooks by Max von Laue (1911, 1921) or Wolfgang Pauli (1921). For instance, equations of motion and acceleration transformations were developed in the papers of Hendrik Antoon Lorentz (1899, 1904), Henri Poincaré (1905), Albert Einstein (1905), Max Planck (1906), and four-acceleration, proper acceleration, hyperbolic motion, accelerating reference frames, Born rigidity, have been analyzed by Einstein (1907), Hermann Minkowski (1907, 1908), Max Born (1909), Gustav Herglotz (1909), Arnold Sommerfeld (1910), von Laue (1911), Friedrich Kottler (1912, 1914), see . (en)
  • 狹義相對論中的加速度類似於牛頓力學中的概念,乃速度對於時間的微分。因為相對論中的勞侖茲轉換及時間膨脹,時間與距離的概念變為複雜,因此「加速度」的定義也變得複雜。狹義相對論為平直閔考斯基時空的理論,即使加速度存在依然有效,前提是能量動量張量所造成的重力場效應可以忽略。否則,則需用到廣義相對論以及彎曲時空來詮釋。在地球表面附近,時空彎曲程度不明顯,因此實務上採用狹義相對論來詮釋物理現象仍是合宜作法,比如粒子加速器實驗。 如同在外界慣性座標系中的測量,三維空間中的普通加速度(稱為「三維加速度」或「座標加速度」)的轉換式可以推導得出。此外作為一特例,也可用共動(comoving)的加速規來測量固有加速度。另一種有用的形式是四維加速度,其分量可透過勞侖茲轉換在不同參考系中做連結。連結加速度與力的運動方程式也可得到。幾種特殊形式的加速物體運動方程式以及它們的彎曲世界線可以透過對上述方程式的積分求得。知名的特例如,適用於常數值縱向固有加速度的例子,以及等速率圓周運動。最後,在狹義相對論的架構下,描述加速參考系中的物理現象亦為可行。 歷史演進上,在相對論發展的早年即已出現包含加速度的相對論性方程式,在早年的教科書中有整理,如馬克斯·馮·勞厄(1911年、1921年)或沃夫岡·包立(1921年)。舉例來說,運動方程式以及加速度轉換式於以下學者的論文中建立起來:亨德里克·勞侖茲(1899年、1904年)、儒勒·昂利·龐加萊(1905年)、阿爾伯特·愛因斯坦(1905年)、馬克斯·普朗克(1906年);四維加速度、固有加速度與雙曲運動的分析參見赫爾曼·閔考斯基 (1908年)、馬克斯·玻恩(1909年)、(1909年)、阿諾·索末菲(1910年)、馮·勞厄(1911年)。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 52920749 (xsd:integer)
dbo:wikiPageLength
  • 59926 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1068550908 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Die Beschleunigung in der speziellen Relativitätstheorie (SRT) ist, wie in der Newtonschen Mechanik, die Ableitung der Geschwindigkeit nach der Zeit. Da in der SRT jedes Inertialsystem seine eigene Uhr mitführt, es also keine absolute Zeit gibt, folgen daraus komplexere Definitionen der Beschleunigung. Die SRT als Theorie der flachen Minkowski-Raumzeit ist also durchaus in der Lage, beschleunigte Bewegungen zu beschreiben, entgegen einer häufigen Fehlannahme. (de)
  • Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor (which is mainly determined by mass). However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators. (en)
  • 狹義相對論中的加速度類似於牛頓力學中的概念,乃速度對於時間的微分。因為相對論中的勞侖茲轉換及時間膨脹,時間與距離的概念變為複雜,因此「加速度」的定義也變得複雜。狹義相對論為平直閔考斯基時空的理論,即使加速度存在依然有效,前提是能量動量張量所造成的重力場效應可以忽略。否則,則需用到廣義相對論以及彎曲時空來詮釋。在地球表面附近,時空彎曲程度不明顯,因此實務上採用狹義相對論來詮釋物理現象仍是合宜作法,比如粒子加速器實驗。 如同在外界慣性座標系中的測量,三維空間中的普通加速度(稱為「三維加速度」或「座標加速度」)的轉換式可以推導得出。此外作為一特例,也可用共動(comoving)的加速規來測量固有加速度。另一種有用的形式是四維加速度,其分量可透過勞侖茲轉換在不同參考系中做連結。連結加速度與力的運動方程式也可得到。幾種特殊形式的加速物體運動方程式以及它們的彎曲世界線可以透過對上述方程式的積分求得。知名的特例如,適用於常數值縱向固有加速度的例子,以及等速率圓周運動。最後,在狹義相對論的架構下,描述加速參考系中的物理現象亦為可行。 (zh)
rdfs:label
  • Beschleunigung (spezielle Relativitätstheorie) (de)
  • Acceleration (special relativity) (en)
  • 狹義相對論中的加速度 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License