In mathematics, the fundamental group scheme is a group scheme canonically attached to a scheme over a Dedekind scheme (e.g. the spectrum of a field or the spectrum of a discrete valuation ring). It is a generalisation of the étale fundamental group. Although its existence was conjectured by Alexander Grothendieck, the first proof if its existence is due, for schemes defined over fields, to Madhav Nori. A proof of its existence for schemes defined over Dedekind schemes is due to , Michel Emsalem and Carlo Gasbarri.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |