An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

Property Value
dbo:abstract
• In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen style. Every line is a conditional tautology (or theorem) with zero or more conditions on the left. * Natural deduction. Every (conditional) line has exactly one asserted proposition on the right. * Sequent calculus. Every (conditional) line has zero or more asserted propositions on the right. In other words, natural deduction and sequent calculus systems are particular distinct kinds of Gentzen-style systems. Hilbert-style systems typically have a very small number of inference rules, relying more on sets of axioms. Gentzen-style systems typically have very few axioms, if any, relying more on sets of rules. Gentzen-style systems have significant practical and theoretical advantages compared to Hilbert-style systems. For example, both natural deduction and sequent calculus systems facilitate the elimination and introduction of universal and existential quantifiers so that unquantified logical expressions can be manipulated according to the much simpler rules of propositional calculus. In a typical argument, quantifiers are eliminated, then propositional calculus is applied to unquantified expressions (which typically contain free variables), and then the quantifiers are reintroduced. This very much parallels the way in which mathematical proofs are carried out in practice by mathematicians. Predicate calculus proofs are generally much easier to discover with this approach, and are often shorter. Natural deduction systems are more suited to practical theorem-proving. Sequent calculus systems are more suited to theoretical analysis. (en)
dbo:thumbnail
dbo:wikiPageID
• 252329 (xsd:integer)
dbo:wikiPageLength
• 53178 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
• 1102174974 (xsd:integer)
dbp:id
• p/s084580 (en)
dbp:title
• Sequent calculus (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdfs:comment
• In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies. (en)
rdfs:label
• Sequent calculus (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of