In geometry, the Poncelet point of four given points is defined as follows: Let A, B, C, and D be four points in the plane that do not form an orthocentric system. The nine-point circles of triangles ABC, BCD, CDA, DAB meet at one point, the Poncelet point of the points A, B, C, and D. If A, B, C, and D be four points in the plane that form an orthocentric system then triangles ABC, BCD, CDA, DAB all share the same nine-point circle.

Property Value
dbo:abstract
  • In geometry, the Poncelet point of four given points is defined as follows: Let A, B, C, and D be four points in the plane that do not form an orthocentric system. The nine-point circles of triangles ABC, BCD, CDA, DAB meet at one point, the Poncelet point of the points A, B, C, and D. If A, B, C, and D be four points in the plane that form an orthocentric system then triangles ABC, BCD, CDA, DAB all share the same nine-point circle. (en)
  • Точка Понселе — предмет следующей теоремы: (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 6811772 (xsd:integer)
dbo:wikiPageLength
  • 916 (xsd:integer)
dbo:wikiPageRevisionID
  • 619961052 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • In geometry, the Poncelet point of four given points is defined as follows: Let A, B, C, and D be four points in the plane that do not form an orthocentric system. The nine-point circles of triangles ABC, BCD, CDA, DAB meet at one point, the Poncelet point of the points A, B, C, and D. If A, B, C, and D be four points in the plane that form an orthocentric system then triangles ABC, BCD, CDA, DAB all share the same nine-point circle. (en)
  • Точка Понселе — предмет следующей теоремы: (ru)
rdfs:label
  • Poncelet point (en)
  • Точка Понселе (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of