An Entity of Type: Manifold103717750, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a complex differential form is a differential form on a manifold (usually a complex manifold) which is permitted to have complex coefficients. Complex forms have broad applications in differential geometry. On complex manifolds, they are fundamental and serve as the basis for much of algebraic geometry, Kähler geometry, and Hodge theory. Over non-complex manifolds, they also play a role in the study of almost complex structures, the theory of spinors, and CR structures.

Property Value
dbo:abstract
  • In mathematics, a complex differential form is a differential form on a manifold (usually a complex manifold) which is permitted to have complex coefficients. Complex forms have broad applications in differential geometry. On complex manifolds, they are fundamental and serve as the basis for much of algebraic geometry, Kähler geometry, and Hodge theory. Over non-complex manifolds, they also play a role in the study of almost complex structures, the theory of spinors, and CR structures. Typically, complex forms are considered because of some desirable decomposition that the forms admit. On a complex manifold, for instance, any complex k-form can be decomposed uniquely into a sum of so-called (p,q)-forms: roughly, wedges of p differentials of the holomorphic coordinates with q differentials of their complex conjugates. The ensemble of (p,q)-forms becomes the primitive object of study, and determines a finer geometrical structure on the manifold than the k-forms. Even finer structures exist, for example, in cases where Hodge theory applies. (en)
  • Eine komplexe Differentialform ist ein mathematisches Objekt aus der komplexen Geometrie. Eine komplexe Differentialform ist eine Entsprechung der (reellen) Differentialformen auf komplexen Mannigfaltigkeiten. Genauso wie im reellen Fall bilden auch die komplexen Differentialform eine graduierte Algebra. Eine komplexe Differentialform vom Grad (oder kurz k-Form) kann auf eindeutige Art und Weise in zwei Differentialformen zerlegt werden, die dann den Grad beziehungsweise mit haben. Um diese Zerlegung zu betonen, spricht man auch von (p,q)-Formen. Bei dieser kurzen Sprechweise wird auch klar, dass es sich um komplexe Differentialformen handelt, denn reelle Formen besitzen keine solche Zerlegung. Eine wichtige Rolle spielt der Kalkül der komplexen Differentialformen in der Hodge-Theorie. (de)
  • En matemáticas, una forma diferencial compleja es una forma diferencial en una variedad (normalmente una variedad compleja) a la que se le permite tener coeficientes complejos. Las formas complejas tienen muchas aplicaciones en geometría diferencial. En las variedades complejas, son fundamentales y sirven de base para gran parte de la geometría algebraica, la geometría de Kähler y la teoría de Hodge. En las variedades no complejas, también desempeñan un papel en el estudio de la , la teoría de los espinores y la . Típicamente, las formas complejas se consideran debido a alguna descomposición deseable que las formas admiten. En una variedad compleja, por ejemplo, cualquier forma compleja k puede descomponerse unívocamente en una suma de las llamadas (p, q)-formas: aproximadamente, cuñas de p diferenciales de las coordenadas holomorfas con q diferenciales de sus conjugados complejos. El conjunto de formas (p,q) se convierte en el objeto primitivo de estudio, y determina una estructura geométrica más fina en la variedad que las formas k. Existen estructuras aún más finas, por ejemplo, en los casos en que se aplica la teoría de Hodge. (es)
  • 数学では、複素微分形式(complex differential form)は、複素数係数を持つ多様体(通常は複素多様体)上の微分形式である。 複素微分形式は、微分幾何学において広く応用されている。複素多様体上での代数幾何学やケーラー幾何学やホッジ理論の多くで、複素微分形式は重要な基本としなっている。複素多様体でない場合でも、複素微分方程式は概複素構造やスピノルの理論やCR構造の研究で重要な役割を果たしている。 典型的には、複素微分形式は容易に期待される分解を持つ考えられている。たとえば、複素多様体上では、任意の k-形式が一意に (p,q)-形式に分解する。(p,q)-形式とは、大まかには、正則座標の p 個の外微分と、その複素共役の q 個の外微分のウェッジ積である。(p,q)-形式の集合は、基本的研究対象であり、k-形式以上に、多様体の幾何学的構造をよりよく反映定する。たとえば、ホッジ理論が適用可能な場合は、(k-形式よりも)良い多様体の構造が存在する。 (ja)
  • 미분기하학에서 복소수 미분 형식(複素數微分形式, 영어: complex differential form)은 복소다양체 위에 정의한 미분 형식이다. (실수) 매끄러운 다양체 위의 미분 형식과는 달리, 정칙 형식 · 돌보 코호몰로지 등의 개념을 정의할 수 있다. (ko)
  • Комплексная дифференциальная форма — дифференциальная форма с комплексными коэффициентами, обычно рассматривается на комплексных многообразиях. (ru)
dbo:wikiPageID
  • 2497815 (xsd:integer)
dbo:wikiPageLength
  • 9004 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118858431 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Eine komplexe Differentialform ist ein mathematisches Objekt aus der komplexen Geometrie. Eine komplexe Differentialform ist eine Entsprechung der (reellen) Differentialformen auf komplexen Mannigfaltigkeiten. Genauso wie im reellen Fall bilden auch die komplexen Differentialform eine graduierte Algebra. Eine komplexe Differentialform vom Grad (oder kurz k-Form) kann auf eindeutige Art und Weise in zwei Differentialformen zerlegt werden, die dann den Grad beziehungsweise mit haben. Um diese Zerlegung zu betonen, spricht man auch von (p,q)-Formen. Bei dieser kurzen Sprechweise wird auch klar, dass es sich um komplexe Differentialformen handelt, denn reelle Formen besitzen keine solche Zerlegung. Eine wichtige Rolle spielt der Kalkül der komplexen Differentialformen in der Hodge-Theorie. (de)
  • 数学では、複素微分形式(complex differential form)は、複素数係数を持つ多様体(通常は複素多様体)上の微分形式である。 複素微分形式は、微分幾何学において広く応用されている。複素多様体上での代数幾何学やケーラー幾何学やホッジ理論の多くで、複素微分形式は重要な基本としなっている。複素多様体でない場合でも、複素微分方程式は概複素構造やスピノルの理論やCR構造の研究で重要な役割を果たしている。 典型的には、複素微分形式は容易に期待される分解を持つ考えられている。たとえば、複素多様体上では、任意の k-形式が一意に (p,q)-形式に分解する。(p,q)-形式とは、大まかには、正則座標の p 個の外微分と、その複素共役の q 個の外微分のウェッジ積である。(p,q)-形式の集合は、基本的研究対象であり、k-形式以上に、多様体の幾何学的構造をよりよく反映定する。たとえば、ホッジ理論が適用可能な場合は、(k-形式よりも)良い多様体の構造が存在する。 (ja)
  • 미분기하학에서 복소수 미분 형식(複素數微分形式, 영어: complex differential form)은 복소다양체 위에 정의한 미분 형식이다. (실수) 매끄러운 다양체 위의 미분 형식과는 달리, 정칙 형식 · 돌보 코호몰로지 등의 개념을 정의할 수 있다. (ko)
  • Комплексная дифференциальная форма — дифференциальная форма с комплексными коэффициентами, обычно рассматривается на комплексных многообразиях. (ru)
  • In mathematics, a complex differential form is a differential form on a manifold (usually a complex manifold) which is permitted to have complex coefficients. Complex forms have broad applications in differential geometry. On complex manifolds, they are fundamental and serve as the basis for much of algebraic geometry, Kähler geometry, and Hodge theory. Over non-complex manifolds, they also play a role in the study of almost complex structures, the theory of spinors, and CR structures. (en)
  • En matemáticas, una forma diferencial compleja es una forma diferencial en una variedad (normalmente una variedad compleja) a la que se le permite tener coeficientes complejos. Las formas complejas tienen muchas aplicaciones en geometría diferencial. En las variedades complejas, son fundamentales y sirven de base para gran parte de la geometría algebraica, la geometría de Kähler y la teoría de Hodge. En las variedades no complejas, también desempeñan un papel en el estudio de la , la teoría de los espinores y la . (es)
rdfs:label
  • Komplexe Differentialform (de)
  • Forma diferencial compleja (es)
  • Complex differential form (en)
  • 複素微分形式 (ja)
  • 복소수 미분 형식 (ko)
  • Комплексная дифференциальная форма (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License