dbo:abstract
|
- In mathematics, Artin–Verdier duality is a duality theorem for constructible abelian sheaves over the spectrum of a ring of algebraic numbers, introduced by Michael Artin and Jean-Louis Verdier, that generalizes Tate duality. It shows that, as far as etale (or flat) cohomology is concerned, the ring of integers in a number field behaves like a 3-dimensional mathematical object. (en)
- Inom matematiken är Artin–Verdierdualitet en för konstruktibla abelska kärven över spektret av en ring av algebraiska talen, introducrad av Artin och Verdier, som generaliserar Tatedualiteten. (sv)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5385 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:authorlink
|
- Christopher Deninger (en)
- Jean-Louis Verdier (en)
- Michael Artin (en)
|
dbp:first
|
- Christopher (en)
- Michael (en)
- Jean-Louis (en)
|
dbp:last
|
- Verdier (en)
- Artin (en)
- Deninger (en)
|
dbp:wikiPageUsesTemplate
| |
dbp:year
|
- 1964 (xsd:integer)
- 1986 (xsd:integer)
|
dcterms:subject
| |
gold:hypernym
| |
rdfs:comment
|
- In mathematics, Artin–Verdier duality is a duality theorem for constructible abelian sheaves over the spectrum of a ring of algebraic numbers, introduced by Michael Artin and Jean-Louis Verdier, that generalizes Tate duality. It shows that, as far as etale (or flat) cohomology is concerned, the ring of integers in a number field behaves like a 3-dimensional mathematical object. (en)
- Inom matematiken är Artin–Verdierdualitet en för konstruktibla abelska kärven över spektret av en ring av algebraiska talen, introducrad av Artin och Verdier, som generaliserar Tatedualiteten. (sv)
|
rdfs:label
|
- Artin–Verdier duality (en)
- Artin–Verdierdualitet (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |