About: Tait–Kneser theorem     Goto   Sponge   Distinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTait%E2%80%93Kneser_theorem

In differential geometry, the Tait–Kneser theorem states that, if a smooth plane curve has monotonic curvature, then the osculating circles of the curve are disjoint and nested within each other.The logarithmic spiral or the pictured Archimedean spiral provide examples of curves whose curvature is monotonic for the entire curve. This monotonicity cannot happen for a simple closed curve (by the four-vertex theorem, there are at least four vertices where the curvature reaches an extreme point) but for such curves the theorem can be applied to the arcs of the curves between its vertices.

AttributesValues
rdfs:label
  • Tait–Kneser theorem (en)
  • Теорема Тэйта — Кнезера (ru)
rdfs:comment
  • In differential geometry, the Tait–Kneser theorem states that, if a smooth plane curve has monotonic curvature, then the osculating circles of the curve are disjoint and nested within each other.The logarithmic spiral or the pictured Archimedean spiral provide examples of curves whose curvature is monotonic for the entire curve. This monotonicity cannot happen for a simple closed curve (by the four-vertex theorem, there are at least four vertices where the curvature reaches an extreme point) but for such curves the theorem can be applied to the arcs of the curves between its vertices. (en)
  • Теорема Тэйта — Кнезера о спирале утверждает, что, если кривизна гладкой плоской кривой монотонна, то соприкасающиеся окружности этой кривой вложены друг в друга.В частности, они не пересекаются; отсюда следует, что кривая не имеет самопересечений. Логарифмическая спираль, а также архимедова спираль — примеры кривых с монотонной кривизной. Теорема названа по имени Питера Тэйта, который доказал её в 1896 году, и Адольфа Кнезера, который переоткрыл её в 1912 году. (ru)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Log_spiral_with_osculating_circles.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Osculating_circles_of_the_Archimedean_spiral.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In differential geometry, the Tait–Kneser theorem states that, if a smooth plane curve has monotonic curvature, then the osculating circles of the curve are disjoint and nested within each other.The logarithmic spiral or the pictured Archimedean spiral provide examples of curves whose curvature is monotonic for the entire curve. This monotonicity cannot happen for a simple closed curve (by the four-vertex theorem, there are at least four vertices where the curvature reaches an extreme point) but for such curves the theorem can be applied to the arcs of the curves between its vertices. The theorem is named after Peter Tait, who published it in 1896, and Adolf Kneser, who rediscovered it and published it in 1912. Tait's proof follows simply from the properties of the evolute, the curve traced out by the centers of osculating circles.For curves with monotone curvature, the arc length along the evolute between two centers equals the difference in radii of the corresponding circles.This arc length must be greater than the straight-line distance between the same two centers, so the two circles have centers closer together than the difference of their radii, from which the theorem follows. Analogous disjointness theorems can be proved for the family of Taylor polynomials of a given smooth function, and for the osculating conics to a given smooth curve. (en)
  • Теорема Тэйта — Кнезера о спирале утверждает, что, если кривизна гладкой плоской кривой монотонна, то соприкасающиеся окружности этой кривой вложены друг в друга.В частности, они не пересекаются; отсюда следует, что кривая не имеет самопересечений. Логарифмическая спираль, а также архимедова спираль — примеры кривых с монотонной кривизной. Теорема названа по имени Питера Тэйта, который доказал её в 1896 году, и Адольфа Кнезера, который переоткрыл её в 1912 году. Доказательство строится на свойствах эволюты кривой.Для кривых с монотонной кривизной длина дуги эволюты между двумя центрами кривизны равна разности соответствующих радиусов кривизны.Эта длина дуги должна быть больше, чем расстояние по прямой между теми же двумя центрами, поэтому соприкасающиеся окружности имеют центры ближе друг к другу, чем разность их радиусов, из чего следует утверждение теоремы. (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software