rdfs:comment
| - منشئ المنحنى أو مطور المنحنى (بالإنجليزية: evolute) هو المحل الهندسي لمراكز انحناء منحنى آخر، ويعرف الأخير أو الإنفوليوت involute، كما يعرف أيضًا منشئ المنحنى بأنه من الخطوط المستقيمة المتعامدة على منحنى. المنحنى الأصلي هو أحد لمنشئ منحناه.
- En , l'evoluta d'una corba és el lloc geomètric de tots els seus centres de curvatura. O el que és equivalent, és la de les normals a una corba. La corba original és una involuta de la seva evoluta. (Compareu i )
- Die Evolute einer ebenen Kurve ist
* die Bahn, auf der sich der Mittelpunkt des Krümmungskreises bewegt, wenn der zugehörige Punkt die gegebene Kurve durchläuft. Oder auch:
* die Hüllkurve (Enveloppe) der Normalen der gegebenen Kurve. Evoluten stehen in engem Zusammenhang mit den Evolventen einer gegebenen Kurve, denn es gilt: Eine Kurve ist die Evolute jeder ihrer Evolventen.
- En la diferenciala geometrio, evoluto de kurbo estas la de ĉiuj ĝiaj (centroj de kurbeco). Ekvivalente, ĝi estas la de perpendikularoj al la fonta kurbo. La originala kurbo estas de ĝia evoluto.
- Se llama evoluta de una curva "C" dada, al lugar geométrico de los centros de curvatura de "C".
- Geometrian, "K" kurba baten eboluta beste kurba bat da, "K" kurbaren osatzen duten leku geometrikoa dena. Beste hitzez, eboluta kurbarekiko normalen da. Jatorrizko kurbari bilkari esaten zaio.
- L'evoluta di una curva piana è un'altra curva piana che si ottiene come luogo geometrico dei centri di curvatura di (ovvero i centri dei cerchi osculatori, che meglio approssimano la curva nei punti). Per esempio, l'evoluta di un cerchio è il suo centro stesso. In questo modo viene detta involuta o evolvente di .
- 축폐선(evolute, 縮閉線) 또는 에볼류트, 에볼류트곡선(-曲線)은 어떤 곡선의 각 점에 대한 의 이 이루는 또 하나의 곡선이다. 모든 점에 대한 곡률 중심을 찾을 수 있다면 곡선의 종류는 관계없이 한 곡선에서 다른 곡선을 유도해내는 것이므로 곡선의 의 일종이다. 정의상, 모든 점은 그 점을 중심으로 하는 임의의 원의 축폐선이다. 신개선과는 쌍대적인 관계에 있다. 즉, 곡선 A가 B의 신개선이라면, 정의상 곡선 B는 A의 축폐선이다.
- In de vlakke meetkunde noemt men de evolute van een gladde kromme, de meetkundige plaats (verzameling) van alle plaatselijke krommingsmiddelpunten van die kromme. Als C een gladde kromme is met snelheid en kromtestraal overal verschillend van 0 en oneindig, en E is de evolute van C, dan is C een evolvente van E. Omgekeerd geldt dat de evolute van een evolvente, weer de oorspronkelijke kromme is.
- Na , a evoluta de uma curva é o lugar geométrico de todos suas (centros de curvatura).
- Ewoluta (łac. evolutus, rozwinięty) a. rozwinięta krzywej – krzywa utworzona ze środków krzywizny krzywej Każda krzywa jest ewolutą swojej ewolwenty. Jeśli krzywa jest ewolutą danej krzywej to jej styczne są normalnymi do krzywej Przykłady
* ewolutą traktrysy jest krzywa łańcuchowa,
* ewolutą cykloidy jest cykloida.
- Эволю́та плоской кривой — геометрическое место точек, являющихся центрами кривизны кривой. По отношению к своей эволюте любая кривая является эвольвентой.
- 漸屈線是曲線微分幾何中的概念,它是曲線上圓心的軌跡。等價的描述是一條曲線的漸屈線即是其法線的包絡。 漸屈線與漸伸線是一對相對的概念,若曲線A是曲線B的漸屈線,曲線B即為曲線A的漸伸線。每條曲線的漸屈線唯一確定,但卻可以有無窮多條漸伸線。
- Еволюта (лат. evolutus — розгорнутий) — множина точок центрів кривизни кривої. По відношенню до своєї еволюти будь-яка крива є евольвентою. Для побудови еволюти кривої, крива в околі кожної точки апроксимується частиною кола, дотичного до кривої. Центри таких кіл і утворюють еволюту. Еволюта є обвідною сімейства її нормалей. Поняття еволюти і термін введені Х. Гюйгенсом (1673).
- In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve. The evolute of a circle is therefore a single point at its center. Equivalently, an evolute is the envelope of the normals to a curve. Evolutes are closely connected to involutes: A curve is the evolute of any of its involutes.
- En géométrie, la développée d'une courbe plane est le lieu de ses centres de courbure. On peut aussi la décrire comme l'enveloppe de la famille des droites normales à la courbe. On suppose la courbe suffisamment dérivable et birégulière. Si elle est paramétrée par l'abscisse curviligne sous la forme , le centre de courbure s'obtient en posant où est le centre de courbure, la courbure et le vecteur normal au point . Le vecteur dérivé de la développée est en utilisant les formules de Frenet. On vérifie ainsi que :
|