About: List of Mersenne primes and perfect numbers     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FList_of_Mersenne_primes_and_perfect_numbers

Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 22 − 1. The numbers p corresponding to Mersenne primes must themselves be prime, although not all primes p lead to Mersenne primes—for example, 211 − 1 = 2047 = 23 × 89. Meanwhile, perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6.

AttributesValues
rdfs:label
  • List of Mersenne primes and perfect numbers (en)
  • 梅森素数与完全数集合 (zh)
rdfs:comment
  • Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 22 − 1. The numbers p corresponding to Mersenne primes must themselves be prime, although not all primes p lead to Mersenne primes—for example, 211 − 1 = 2047 = 23 × 89. Meanwhile, perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. (en)
  • 梅森素数与完全数是数论里关系密切的自然数。梅森素数以数学家、神学家、修士马兰·梅森命名,是能以2n-1表示、且n为正整数的质数,如梅森素数3就能写成22-1。梅森素数在上述表达式对应的数n一定是质数,但n是质数不代表得出的结果就是梅森素数,如211-1=2047=23×89。完全数是等于真因数之和的自然数,真因数即自然数除自身外的因数。例如6就是完全数,因数分别是1、2、3、6且1+2+3=6。 根据欧几里得部分证明、萊昂哈德·歐拉完全证明的歐幾里得-歐拉定理可知梅森素数与已知完全数一一对应:只有能换算成公式2n-1×(2n-1),且2n − 1是梅森素数的偶数是完全数。以n=2为例,22-1=3为质数,22-1×(22-1)=2×3=6为完全数。 梅森素数与完全数是否无穷尽目前还是未解决的数学问题,伦斯特拉-波默朗斯-瓦格斯塔夫猜想的主题便是梅森素数频率,推断比x小的梅森素数期望个数為(eγ/log2)×log log x,其中e是欧拉数,γ是欧拉常数,log是自然對數。已经发现的完全数都是偶数,但尚未排除存在奇数完全数的可能。已證明奇完全数必滿足某些條件,如不小於101500。 (zh)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Perfect_number_Cuisenaire_rods_6.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Digits_in_largest_prime_found_as_a_function_of_time.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software