Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 22 − 1. The numbers p corresponding to Mersenne primes must themselves be prime, although not all primes p lead to Mersenne primes—for example, 211 − 1 = 2047 = 23 × 89. Meanwhile, perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6.