About: Circle packing in a square     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCircle_packing_in_a_square

Circle packing in a square is a packing problem in applied mathematics, where the aim is to pack n unit circles into the smallest possible square; or, equivalently, to arrange n points in a unit square aiming to get the greatest minimal separation, dn, between points. To convert between these two formulations of the problem, the square side for unit circles will be . Solutions (not necessarily optimal) have been computed for every N≤10,000. Solutions up to N=20 are shown below:

AttributesValues
rdfs:label
  • Circle packing in a square
  • Empilement de cercles dans un carré
  • 정사각형 안에 원 채우기
rdfs:comment
  • L'empilement de cercles dans un carré est un problème d'empilement bidimensionnel dont l'objectif est d'empiler des cercles unités identiques de nombre n dans le carré le plus petit possible. De manière équivalente, l'objectif est de disposer n points dans un carré visant à obtenir le moins de séparation, dn, entre les points. Pour passer d'une formulations du problème à l'autre, le côté du carré des cercles unitaires sera . Des solutions (pas nécessairement optimales) ont été calculées pour chaque n≤10 000. Les solutions allant jusqu'à n = 20 sont indiquées ci-dessous.
  • 정사각형 안에 원 채우기는 유희 수학의 채우기 문제이다. 목표는 단위원 n개를 가장 작은 정사각형에 채우는 것, 또는 n개의 점을 단위 정사각형에 최소거리 dn가 최대가 되도록하는 것이다. 이 두 문제를 변환하려면 단위 원이 있는 정사각형의 한 변의 길이는 이 된다. 해(반드시 최적은 아님)는 N≤10,000에 대해서 모두 계산되었다. N=20 까지의 해를 아래에 나타냈다.:
  • Circle packing in a square is a packing problem in applied mathematics, where the aim is to pack n unit circles into the smallest possible square; or, equivalently, to arrange n points in a unit square aiming to get the greatest minimal separation, dn, between points. To convert between these two formulations of the problem, the square side for unit circles will be . Solutions (not necessarily optimal) have been computed for every N≤10,000. Solutions up to N=20 are shown below:
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • L'empilement de cercles dans un carré est un problème d'empilement bidimensionnel dont l'objectif est d'empiler des cercles unités identiques de nombre n dans le carré le plus petit possible. De manière équivalente, l'objectif est de disposer n points dans un carré visant à obtenir le moins de séparation, dn, entre les points. Pour passer d'une formulations du problème à l'autre, le côté du carré des cercles unitaires sera . Des solutions (pas nécessairement optimales) ont été calculées pour chaque n≤10 000. Les solutions allant jusqu'à n = 20 sont indiquées ci-dessous.
  • 정사각형 안에 원 채우기는 유희 수학의 채우기 문제이다. 목표는 단위원 n개를 가장 작은 정사각형에 채우는 것, 또는 n개의 점을 단위 정사각형에 최소거리 dn가 최대가 되도록하는 것이다. 이 두 문제를 변환하려면 단위 원이 있는 정사각형의 한 변의 길이는 이 된다. 해(반드시 최적은 아님)는 N≤10,000에 대해서 모두 계산되었다. N=20 까지의 해를 아래에 나타냈다.:
  • Circle packing in a square is a packing problem in applied mathematics, where the aim is to pack n unit circles into the smallest possible square; or, equivalently, to arrange n points in a unit square aiming to get the greatest minimal separation, dn, between points. To convert between these two formulations of the problem, the square side for unit circles will be . Solutions (not necessarily optimal) have been computed for every N≤10,000. Solutions up to N=20 are shown below: The obvious square packing is optimal for 1, 4, 9, 16, 25, and 36 circles (the smallest six square numbers), but ceases to be optimal for larger squares from 49 onwards.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software