About: Sphere theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSphere_theorem

In Riemannian geometry, the sphere theorem, also known as the quarter-pinched sphere theorem, strongly restricts the topology of manifolds admitting metrics with a particular curvature bound. The precise statement of the theorem is as follows. If M is a complete, simply-connected, n-dimensional Riemannian manifold with sectional curvature taking values in the interval then M is homeomorphic to the n-sphere. (To be precise, we mean the sectional curvature of every tangent 2-plane at each point must lie in .) Another way of stating the result is that if M is not homeomorphic to the sphere, then it is impossible to put a metric on M with quarter-pinched curvature.

AttributesValues
rdf:type
rdfs:label
  • Sphärensatz (de)
  • Théorème de la sphère (fr)
  • Sphere theorem (en)
  • Теорема о сфере (дифференциальная геометрия) (ru)
  • Теорема про сферу (диференціальна геометрія) (uk)
rdfs:comment
  • Der Sphärensatz ist ein bedeutendes Resultat aus der globalen riemannschen Geometrie. Nach Vorarbeiten von Harry Rauch bewiesen Wilhelm Klingenberg und Marcel Berger diesen Satz im Jahr 1961. (de)
  • En géométrie riemannienne, le théorème de la sphère montre que des informations sur la courbure d'une variété, sorte d'espace courbe à plusieurs dimensions, peuvent contraindre fortement la topologie, c'est-à-dire la forme globale de cet espace. Le théorème original est établi en 1960-61 par Marcel Berger et Wilhelm Klingenberg, comme généralisation d'un premier résultat de (en) de 1951. Il a été considérablement amélioré en 2007 par Simon Brendle et Richard Schoen. Cette nouvelle version du théorème est parfois appelée théorème de la sphère différentiable. (fr)
  • Теорема о сфере — общее название теорем, дающих достаточные условия на риманову метрику, гарантирующие гомеоморфность или диффеоморфность многообразия стандартной сфере. (ru)
  • Теорема про сферу — загальна назва теорем, що дають достатні умови на ріманову метрику, які гарантують гомеоморфність або дифеоморфність многовиду стандартній сфері. (uk)
  • In Riemannian geometry, the sphere theorem, also known as the quarter-pinched sphere theorem, strongly restricts the topology of manifolds admitting metrics with a particular curvature bound. The precise statement of the theorem is as follows. If M is a complete, simply-connected, n-dimensional Riemannian manifold with sectional curvature taking values in the interval then M is homeomorphic to the n-sphere. (To be precise, we mean the sectional curvature of every tangent 2-plane at each point must lie in .) Another way of stating the result is that if M is not homeomorphic to the sphere, then it is impossible to put a metric on M with quarter-pinched curvature. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Der Sphärensatz ist ein bedeutendes Resultat aus der globalen riemannschen Geometrie. Nach Vorarbeiten von Harry Rauch bewiesen Wilhelm Klingenberg und Marcel Berger diesen Satz im Jahr 1961. (de)
  • En géométrie riemannienne, le théorème de la sphère montre que des informations sur la courbure d'une variété, sorte d'espace courbe à plusieurs dimensions, peuvent contraindre fortement la topologie, c'est-à-dire la forme globale de cet espace. Le théorème original est établi en 1960-61 par Marcel Berger et Wilhelm Klingenberg, comme généralisation d'un premier résultat de (en) de 1951. Il a été considérablement amélioré en 2007 par Simon Brendle et Richard Schoen. Cette nouvelle version du théorème est parfois appelée théorème de la sphère différentiable. (fr)
  • In Riemannian geometry, the sphere theorem, also known as the quarter-pinched sphere theorem, strongly restricts the topology of manifolds admitting metrics with a particular curvature bound. The precise statement of the theorem is as follows. If M is a complete, simply-connected, n-dimensional Riemannian manifold with sectional curvature taking values in the interval then M is homeomorphic to the n-sphere. (To be precise, we mean the sectional curvature of every tangent 2-plane at each point must lie in .) Another way of stating the result is that if M is not homeomorphic to the sphere, then it is impossible to put a metric on M with quarter-pinched curvature. Note that the conclusion is false if the sectional curvatures are allowed to take values in the closed interval . The standard counterexample is complex projective space with the Fubini–Study metric; sectional curvatures of this metric take on values between 1 and 4, with endpoints included. Other counterexamples may be found among the rank one symmetric spaces. (en)
  • Теорема о сфере — общее название теорем, дающих достаточные условия на риманову метрику, гарантирующие гомеоморфность или диффеоморфность многообразия стандартной сфере. (ru)
  • Теорема про сферу — загальна назва теорем, що дають достатні умови на ріманову метрику, які гарантують гомеоморфність або дифеоморфність многовиду стандартній сфері. (uk)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software