In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative. Let f : A → F be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0 ∈ A is a linear transformation u : E → F with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists,
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Quasi-derivative (en)
- Quasi-pochodna (pl)
|
rdfs:comment
| - Quasi-pochodna – jedno z uogólnień pochodnej funkcji między przestrzeniami Banacha. Quasi-pochodną można postrzegać jako silniejszą wersję pojęcia pochodnej Gâteaux, lecz z kolei słabsze niż pochodna Frécheta (w sensie opisanym ). (pl)
- In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative. Let f : A → F be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0 ∈ A is a linear transformation u : E → F with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists, (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative. Let f : A → F be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0 ∈ A is a linear transformation u : E → F with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists, If such a linear map u exists, then f is said to be quasi-differentiable at x0. Continuity of u need not be assumed, but it follows instead from the definition of the quasi-derivative. If f is Fréchet differentiable at x0, then by the chain rule, f is also quasi-differentiable and its quasi-derivative is equal to its Fréchet derivative at x0. The converse is true provided E is finite-dimensional. Finally, if f is quasi-differentiable, then it is Gateaux differentiable and its Gateaux derivative is equal to its quasi-derivative. (en)
- Quasi-pochodna – jedno z uogólnień pochodnej funkcji między przestrzeniami Banacha. Quasi-pochodną można postrzegać jako silniejszą wersję pojęcia pochodnej Gâteaux, lecz z kolei słabsze niż pochodna Frécheta (w sensie opisanym ). (pl)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |