About: Quasi-derivative     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Space100028651, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/c/6AKsQGtsHJ

In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative. Let f : A → F be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0 ∈ A is a linear transformation u : E → F with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists,

AttributesValues
rdf:type
rdfs:label
  • Quasi-derivative (en)
  • Quasi-pochodna (pl)
rdfs:comment
  • Quasi-pochodna – jedno z uogólnień pochodnej funkcji między przestrzeniami Banacha. Quasi-pochodną można postrzegać jako silniejszą wersję pojęcia pochodnej Gâteaux, lecz z kolei słabsze niż pochodna Frécheta (w sensie opisanym ). (pl)
  • In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative. Let f : A → F be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0 ∈ A is a linear transformation u : E → F with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists, (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative. Let f : A → F be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0 ∈ A is a linear transformation u : E → F with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists, If such a linear map u exists, then f is said to be quasi-differentiable at x0. Continuity of u need not be assumed, but it follows instead from the definition of the quasi-derivative. If f is Fréchet differentiable at x0, then by the chain rule, f is also quasi-differentiable and its quasi-derivative is equal to its Fréchet derivative at x0. The converse is true provided E is finite-dimensional. Finally, if f is quasi-differentiable, then it is Gateaux differentiable and its Gateaux derivative is equal to its quasi-derivative. (en)
  • Quasi-pochodna – jedno z uogólnień pochodnej funkcji między przestrzeniami Banacha. Quasi-pochodną można postrzegać jako silniejszą wersję pojęcia pochodnej Gâteaux, lecz z kolei słabsze niż pochodna Frécheta (w sensie opisanym ). (pl)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software