About: Information matrix test     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FInformation_matrix_test

In econometrics, the information matrix test is used to determine whether a regression model is misspecified. The test was developed by Halbert White, who observed that in a correctly specified model and under standard regularity assumptions, the Fisher information matrix can be expressed in either of two ways: as the outer product of the gradient, or as a function of the Hessian matrix of the log-likelihood function. Consider a linear model , where the errors are assumed to be distributed . If the parameters and are stacked in the vector , the resulting log-likelihood function is

AttributesValues
rdfs:label
  • Information matrix test (en)
rdfs:comment
  • In econometrics, the information matrix test is used to determine whether a regression model is misspecified. The test was developed by Halbert White, who observed that in a correctly specified model and under standard regularity assumptions, the Fisher information matrix can be expressed in either of two ways: as the outer product of the gradient, or as a function of the Hessian matrix of the log-likelihood function. Consider a linear model , where the errors are assumed to be distributed . If the parameters and are stacked in the vector , the resulting log-likelihood function is (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In econometrics, the information matrix test is used to determine whether a regression model is misspecified. The test was developed by Halbert White, who observed that in a correctly specified model and under standard regularity assumptions, the Fisher information matrix can be expressed in either of two ways: as the outer product of the gradient, or as a function of the Hessian matrix of the log-likelihood function. Consider a linear model , where the errors are assumed to be distributed . If the parameters and are stacked in the vector , the resulting log-likelihood function is The information matrix can then be expressed as that is the expected value of the outer product of the gradient or score. Second, it can be written as the negative of the Hessian matrix of the log-likelihood function If the model is correctly specified, both expressions should be equal. Combining the equivalent forms yields where is an random matrix, where is the number of parameters. White showed that the elements of , where is the MLE, are asymptotically normally distributed with zero means when the model is correctly specified. In small samples, however, the test generally performs poorly. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Feb 27 2025, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software