This HTML5 document contains 183 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n24http://www.math.upenn.edu/~ghrist/
dbthttp://dbpedia.org/resource/Template:
wikipedia-enhttp://en.wikipedia.org/wiki/
n42http://appliedtopology.org/source-material-for-topological-data-analysis/
n17https://www.ima.umn.edu/topology/
dbrhttp://dbpedia.org/resource/
n45https://topology-tool-kit.github.io/
n41http://appliedtopology.github.io/javaplex/
n16https://project.inria.fr/gudhi/software/
n31https://github.com/giotto-ai/
n19http://commons.wikimedia.org/wiki/Special:FilePath/
n33http://www.birs.ca/events/2012/5-day-workshops/
dctermshttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n28https://www.ias.edu/about/publications/ias-letter/articles/2013-summer/
n20https://CRAN.R-project.org/
n8http://dbpedia.org/resource/File:
n44https://archive.today/20130629100858/http:/phat.googlecode.com/
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
n32https://github.com/DIPHA/dipha/
dbpedia-ukhttp://uk.dbpedia.org/resource/
dbohttp://dbpedia.org/ontology/
n35https://books.google.com/
dbpedia-pthttp://pt.dbpedia.org/resource/
n21http://www.sas.upenn.edu/~vnanda/perseus/
n22https://github.com/Ripser/
n34http://uz.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
n29https://www.youtube.com/
n36https://www.researchgate.net/publication/
dbpedia-ruhttp://ru.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
n15https://global.dbpedia.org/id/
n23https://web.archive.org/web/20160131140959/http:/www.ima.umn.edu/topology/
n10http://danifold.net/mapper/
provhttp://www.w3.org/ns/prov#
foafhttp://xmlns.com/foaf/0.1/
n5http://www.mrzv.org/software/dionysus/
dbpedia-zhhttp://zh.dbpedia.org/resource/
n6https://scikit-learn.org/stable/
n39https://cran.r-project.org/web/packages/TDA/
freebasehttp://rdf.freebase.com/ns/
n37https://www.math.cornell.edu/~hatcher/AT/
owlhttp://www.w3.org/2002/07/owl#

Statements

Subject Item
dbr:Metabolomic_Pathway_Analysis
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Betti_number
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Robert_Ghrist
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Valerio_Pascucci
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Mason_Porter
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Geometric_and_Topological_Inference
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Geometric_data_analysis
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Persistent_homology
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:French_Institute_for_Research_in_Computer_Science_and_Automation
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Gestalt_psychology
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Muthu_Alagappan
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Simplicial_homology
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Computational_topology
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Sridhar_Tayur
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Structured_data_analysis_(statistics)
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:TDA
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
dbo:wikiPageDisambiguates
dbr:Topological_data_analysis
Subject Item
dbr:Topological_data_analysis
rdf:type
dbo:ProgrammingLanguage
rdfs:label
拓撲數據分析 Топологічний аналіз даних Topological data analysis Топологический анализ данных Análise topológica de dados
rdfs:comment
In applied mathematics, topological based data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools. Em matemática aplicada, a análise topológica de dados (TDA, na abreviatura do nome em inglês, topological data analysis) é uma abordagem para a análise de conjuntos de dados por meio de técnicas da topologia. A extração de informações de conjuntos de dados de dimensão alta, incompletos e com ruídos é um desafio. A TDA fornece uma estrutura geral para analisar esses dados de maneira insensível à métrica específica escolhida e fornece redução de dimensionalidade e robustez ao ruído. Além disso, ela herda funtorialidade, um conceito fundamental da matemática moderna, de sua natureza topológica, o que lhe permite adaptar-se às novas ferramentas matemáticas. Топологический анализ данных — новая область теоретических исследований для задач анализа данных (Data mining) и компьютерного зрения. Основные вопросы: 1. * Как из низкоразмерных представлений получать структуры высоких размерностей; 2. * Как дискретные единицы складываются в глобальные структуры. Основной метод топологического анализа данных: 拓撲數據分析(Topological Data Analysis ;縮寫作TDA),是應用數學當中一門在數據集的分析用上了拓撲學的新技術領域,主要用於數據挖掘和計算機視覺理論研究。要從多維度、不完整和雜訊多的數據集中提取訊息,一般也具有挑戰性的。 拓撲數據分析的主要問題有: * 如何從低維度的表示去獲得高維度的結構; * 如何將離散單位添加到全局結構中。 人腦可以輕易從低維度的私人數據構建整體結構。例如,從每隻眼睛中的平面圖像中獲取物體的三維形狀並不困難。公共結構的創建也通過將時間片段中的離散組合成連續圖像來執行。例如,電視圖像在技術上是個別點的陣列,然而,它們被認為是單個場景。 拓撲數據分析提供了一種總體框架,以對所選擇的特定度量不敏感的方式分析這些數據,並提供降低維數和對噪聲的魯棒性。以下為當中的主要方法: * 根據接近度參數,通過一些單純複合物系列替換一組數據元素,例如:在數據的點雲中尋找出同調竹4部分。 * 通過這些拓撲結構,特別是穩定同源性的新理論。 * 將數據集的穩定同源性轉碼為參數化版本的Betti數字,以下稱為條形碼。
foaf:depiction
n19:Illustration_of_Typical_Workflow_in_TDA.jpeg
dcterms:subject
dbc:Applied_mathematics dbc:Homology_theory dbc:Computational_topology dbc:Data_analysis dbc:Articles_with_example_R_code
dbo:wikiPageID
17740009
dbo:wikiPageRevisionID
1123014411
dbo:wikiPageWikiLink
dbr:Lipschitz_continuity dbr:Multidimensional_scaling dbr:Applied_mathematics dbc:Articles_with_example_R_code n8:Illustration_of_Typical_Workflow_in_TDA.jpeg dbr:Homology_(mathematics) dbc:Applied_mathematics dbr:Preordered_set dbr:Gabriel's_theorem dbr:Scientific_visualization dbr:Complex_network dbr:Topology dbr:Machine_learning dbr:Nerve_of_a_covering dbr:Čech_cohomology dbc:Homology_theory dbr:Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_domain dbr:Dimensionality_reduction dbr:Confidence_interval dbr:Multiset_(abstract_data_type) dbr:Algebraic_geometry dbr:Null_hypothesis_significance_testing dbr:Wasserstein_metric dbr:Initial_and_terminal_objects dbr:Vanessa_Robins dbr:Principal_component_analysis dbr:Computer_vision dbr:Cech_complex dbr:Spectral_sequence dbr:Markov_chains dbr:Fréchet_mean dbr:Conditional_independence dbr:Reeb_graph dbr:Mutual_information dbr:Matroid dbr:Morse_theory dbr:Discrete_Morse_theory dbr:Size_theory dbc:Computational_topology dbr:Fiber_(mathematics) dbr:Extended_real_number_line dbr:Jordan_block dbr:Self-similarity dbr:Metric_(mathematics) dbr:Simplicial_complex dbr:Algebraic_topology dbr:Dan_Burghelea dbr:Persistent_homology dbr:Data_mining dbr:Vietoris–Rips_complex dbr:Category_theory dbr:Lotka–Volterra_equations dbr:Correlation_coefficient dbr:Functor dbr:Sheaf_(mathematics) dbr:Single-linkage_clustering dbr:Field_(mathematics) dbr:Point_cloud dbr:Shape_analysis_(digital_geometry) dbr:Fundamental_theorem_of_finitely_generated_abelian_groups dbr:Covariance dbr:Computational_topology dbr:Betti_number dbc:Data_analysis
dbo:wikiPageExternalLink
n5: n6: n10: n16: n17: n20:package=TDAstats n21:index.html n22:ripser n23: n24:notes.html n28:lesnick-topological-data-analysis n29:watch%3Fv=2PSqWBIrn90 n31:giotto-tda n32: n29:watch%3Fv=fUvl-B2lx5Q n33:12w5081 n29:watch%3Fv=iOxLgbnl1u4 n35:books%3Fid=if8dCwAAQBAJ n36:327427685_Topological_Kernel_Learning n37:ATpage.html n35:books%3Fid=MDXa6gFRZuIC n39:index.html n41: n42: n44: n45:
owl:sameAs
n15:48jct dbpedia-ru:Топологический_анализ_данных dbpedia-pt:Análise_topológica_de_dados wikidata:Q4460773 n34:Ma’lumotlarning_topologik_tahlili dbpedia-uk:Топологічний_аналіз_даних dbpedia-zh:拓撲數據分析 freebase:m.047f37y
dbp:wikiPageUsesTemplate
dbt:Blockquote dbt:Reflist dbt:Citation_needed dbt:Cite_web dbt:Webarchive dbt:Cite_book dbt:Cn dbt:Clarify dbt:Short_description
dbo:thumbnail
n19:Illustration_of_Typical_Workflow_in_TDA.jpeg?width=300
dbp:date
2016-01-31
dbp:text
one being the study of homological invariants of data one individual data sets, and the other is the use of homological invariants in the study of databases where the data points themselves have geometric structure.
dbp:url
n23:
dbo:abstract
拓撲數據分析(Topological Data Analysis ;縮寫作TDA),是應用數學當中一門在數據集的分析用上了拓撲學的新技術領域,主要用於數據挖掘和計算機視覺理論研究。要從多維度、不完整和雜訊多的數據集中提取訊息,一般也具有挑戰性的。 拓撲數據分析的主要問題有: * 如何從低維度的表示去獲得高維度的結構; * 如何將離散單位添加到全局結構中。 人腦可以輕易從低維度的私人數據構建整體結構。例如,從每隻眼睛中的平面圖像中獲取物體的三維形狀並不困難。公共結構的創建也通過將時間片段中的離散組合成連續圖像來執行。例如,電視圖像在技術上是個別點的陣列,然而,它們被認為是單個場景。 拓撲數據分析提供了一種總體框架,以對所選擇的特定度量不敏感的方式分析這些數據,並提供降低維數和對噪聲的魯棒性。以下為當中的主要方法: * 根據接近度參數,通過一些單純複合物系列替換一組數據元素,例如:在數據的點雲中尋找出同調竹4部分。 * 通過這些拓撲結構,特別是穩定同源性的新理論。 * 將數據集的穩定同源性轉碼為參數化版本的Betti數字,以下稱為條形碼。 Em matemática aplicada, a análise topológica de dados (TDA, na abreviatura do nome em inglês, topological data analysis) é uma abordagem para a análise de conjuntos de dados por meio de técnicas da topologia. A extração de informações de conjuntos de dados de dimensão alta, incompletos e com ruídos é um desafio. A TDA fornece uma estrutura geral para analisar esses dados de maneira insensível à métrica específica escolhida e fornece redução de dimensionalidade e robustez ao ruído. Além disso, ela herda funtorialidade, um conceito fundamental da matemática moderna, de sua natureza topológica, o que lhe permite adaptar-se às novas ferramentas matemáticas. A motivação inicial é estudar a forma dos dados. A TDA combinou a topologia algébrica e outras ferramentas da matemática pura para permitir o estudo matematicamente rigoroso da "forma". A ferramenta principal é a homologia persistente, uma adaptação da homologia para dados de nuvem de pontos. A homologia persistente foi aplicada a muitos tipos de dados em muitas áreas. Além disso, sua base matemática também é de importância teórica. As características exclusivas da TDA fazem dela uma ponte promissora entre topologia e geometria. Топологический анализ данных — новая область теоретических исследований для задач анализа данных (Data mining) и компьютерного зрения. Основные вопросы: 1. * Как из низкоразмерных представлений получать структуры высоких размерностей; 2. * Как дискретные единицы складываются в глобальные структуры. Человеческий мозг легко строит представление об общей структуре по частным данным низких размерностей.Ему, например, не составляет труда получить трехмерную форму объекта по плоским изображениям в каждом глазу. Создание общей структуры также производится при объединении дискретных во времени фрагментов в образ. Так, например, телевизионное изображение технически является массивом отдельных точек, который, однако, воспринимается как единая сцена. Основной метод топологического анализа данных: 1. * Замена набора элементов данных некоторым семейством симплициальных комплексов в соответствии с параметром близости. 2. * Анализ этих топологических комплексов с помощью алгебраической топологии, а конкретно новой теорией персистентных гомологий. 3. * Перекодировка устойчивой гомологии набора данных в параметризованную версию чисел Бетти, называемую баркодом. In applied mathematics, topological based data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools. The initial motivation is to study the shape of data. TDA has combined algebraic topology and other tools from pure mathematics to allow mathematically rigorous study of "shape". The main tool is persistent homology, an adaptation of homology to point cloud data. Persistent homology has been applied to many types of data across many fields. Moreover, its mathematical foundation is also of theoretical importance. The unique features of TDA make it a promising bridge between topology and geometry.
gold:hypernym
dbr:Approach
prov:wasDerivedFrom
wikipedia-en:Topological_data_analysis?oldid=1123014411&ns=0
dbo:wikiPageLength
87997
foaf:isPrimaryTopicOf
wikipedia-en:Topological_data_analysis
Subject Item
dbr:Topology
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Heather_Harrington
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Digital_Morse_theory
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Digital_manifold
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Digital_topology
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Dimensionality_reduction
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Discrete_Morse_theory
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Ismar_Volić
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Reeb_graph
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Gunnar_Carlsson
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
dbp:knownFor
dbr:Topological_data_analysis
dbo:knownFor
dbr:Topological_data_analysis
Subject Item
dbr:Laxmi_Parida
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
dbp:fields
dbr:Topological_data_analysis
dbo:academicDiscipline
dbr:Topological_data_analysis
Subject Item
dbr:Biological_network_inference
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Homology_(mathematics)
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Serguei_Barannikov
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Vanessa_Robins
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Self-organizing_map
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Shape_analysis_(digital_geometry)
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Euler_calculus
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:List_of_topology_topics
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Size_function
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Čech_complex
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
Subject Item
dbr:Topological_Data_Analysis
dbo:wikiPageWikiLink
dbr:Topological_data_analysis
dbo:wikiPageRedirects
dbr:Topological_data_analysis
Subject Item
wikipedia-en:Topological_data_analysis
foaf:primaryTopic
dbr:Topological_data_analysis