dbo:abstract
|
- Die Picardgruppe ist ein Begriff aus den mathematischen Teilgebieten der kommutativen Algebra und der algebraischen Geometrie. Sie ist eine wichtige Invariante von kommutativen Ringen mit Eins und Schemata. Benannt ist sie nach dem Mathematiker Émile Picard. Dieser Artikel beschäftigt sich mit kommutativer Algebra. Insbesondere sind alle betrachteten Ringe kommutativ und haben ein Einselement. Ringhomomorphismen bilden Einselemente auf Einselemente ab. Für weitere Details siehe Kommutative Algebra. (de)
- En géométrie algébrique, le groupe de Picard est un groupe associé à une variété algébrique ou plus généralement à un schéma. Il est en général isomorphe au groupe des diviseurs de Cartier. Si K est un corps de nombres, le groupe de Picard de l'anneau des entiers de K n'est autre que le groupe des classes de K. Pour les courbes algébriques et les variétés abéliennes, le groupe de Picard (ou plutôt le foncteur de Picard) permet de construire respectivement la jacobienne et la variété abélienne duale. Cette construction existe pour les variétés projectives lisses en général. (fr)
- In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group. The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces. (en)
- 数学では、環付き空間 X のピカール群(Picard group)は、 X 上の可逆層(もしくは、直線束)の同型類 Pic(X) がなす群であり、その演算はテンソル積から定まる。この構成は、因子類群やイデアル類群の構成の大域的なバージョンであり、代数幾何学や複素多様体の理論でよく使われる。 ピカール群は、層コホモロジー群 としても定義することができる。 整スキーム(integral scheme)に対して、ピカール群はカルティエ因子の類群と同型であることを示すことができる。複素多様体に対し、指数層系列は、ピカール群の基本的な情報を与える。 エミール・ピカール (Émile Picard) の理論、特に代数曲線の因子の理論から、ピカールの名前がついている。 (ja)
- 대수기하학에서 피카르 군(Picard群, 영어: Picard group)은 환 달린 공간 위에 존재하는 가역층들의 군이다. (ko)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 8131 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- Die Picardgruppe ist ein Begriff aus den mathematischen Teilgebieten der kommutativen Algebra und der algebraischen Geometrie. Sie ist eine wichtige Invariante von kommutativen Ringen mit Eins und Schemata. Benannt ist sie nach dem Mathematiker Émile Picard. Dieser Artikel beschäftigt sich mit kommutativer Algebra. Insbesondere sind alle betrachteten Ringe kommutativ und haben ein Einselement. Ringhomomorphismen bilden Einselemente auf Einselemente ab. Für weitere Details siehe Kommutative Algebra. (de)
- En géométrie algébrique, le groupe de Picard est un groupe associé à une variété algébrique ou plus généralement à un schéma. Il est en général isomorphe au groupe des diviseurs de Cartier. Si K est un corps de nombres, le groupe de Picard de l'anneau des entiers de K n'est autre que le groupe des classes de K. Pour les courbes algébriques et les variétés abéliennes, le groupe de Picard (ou plutôt le foncteur de Picard) permet de construire respectivement la jacobienne et la variété abélienne duale. Cette construction existe pour les variétés projectives lisses en général. (fr)
- 数学では、環付き空間 X のピカール群(Picard group)は、 X 上の可逆層(もしくは、直線束)の同型類 Pic(X) がなす群であり、その演算はテンソル積から定まる。この構成は、因子類群やイデアル類群の構成の大域的なバージョンであり、代数幾何学や複素多様体の理論でよく使われる。 ピカール群は、層コホモロジー群 としても定義することができる。 整スキーム(integral scheme)に対して、ピカール群はカルティエ因子の類群と同型であることを示すことができる。複素多様体に対し、指数層系列は、ピカール群の基本的な情報を与える。 エミール・ピカール (Émile Picard) の理論、特に代数曲線の因子の理論から、ピカールの名前がついている。 (ja)
- 대수기하학에서 피카르 군(Picard群, 영어: Picard group)은 환 달린 공간 위에 존재하는 가역층들의 군이다. (ko)
- In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces. (en)
|
rdfs:label
|
- Picardgruppe (de)
- Groupe de Picard (fr)
- ピカール群 (ja)
- 피카르 군 (ko)
- Picard group (en)
|
owl:differentFrom
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is owl:differentFrom
of | |
is foaf:primaryTopic
of | |