An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

Compared to terrestrial environments, marine environments have biomass pyramids which are inverted at the base. In particular, the biomass of consumers (copepods, krill, shrimp, forage fish) is larger than the biomass of primary producers. This happens because the ocean's primary producers are tiny phytoplankton which grow and reproduce rapidly, so a small mass can have a fast rate of primary production. In contrast, many significant terrestrial primary producers, such as mature forests, grow and reproduce slowly, so a much larger mass is needed to achieve the same rate of primary production.

Property Value
dbo:abstract
  • Un réseau trophique marin est une chaîne alimentaire, dont les êtres vivants évoluent dans un milieu aquatique salé. Ces organismes marins sont à la fois consommateurs et producteurs : ils constituent les maillons d'un réseau trophique spécifique à l'environnement marin. La représentation simplifiée d'un réseau alimentaire est une suite de niveaux. La réalité est cependant plus complexe dans la mesure où les régimes changent au cours de la vie, et peuvent contenir des végétaux comme des animaux, voire des individus de la même espèce (cannibalisme). Le passage d'un niveau du réseau trophique au suivant se caractérise par la production et la consommation de biomasse. L'étude des réseaux trophiques marins met en évidence des liens entre les espèces de la biocénose marine, allant du tout petit (bactérie, organisme unicellulaire ou algue microscopique constituant la base de pyramide alimentaire) à des formes de vie plus imposantes comme les "grands prédateurs" (requins, thons...). On peut distinguer les maillons principaux de la chaîne trophique marine, des organismes autotrophes comme le phytoplancton, aux organismes hétérotrophes (herbivores et carnivores). (fr)
  • Compared to terrestrial environments, marine environments have biomass pyramids which are inverted at the base. In particular, the biomass of consumers (copepods, krill, shrimp, forage fish) is larger than the biomass of primary producers. This happens because the ocean's primary producers are tiny phytoplankton which grow and reproduce rapidly, so a small mass can have a fast rate of primary production. In contrast, many significant terrestrial primary producers, such as mature forests, grow and reproduce slowly, so a much larger mass is needed to achieve the same rate of primary production. Because of this inversion, it is the zooplankton that make up most of the marine animal biomass. As primary consumers, zooplankton are the crucial link between the primary producers (mainly phytoplankton) and the rest of the marine food web (secondary consumers). If phytoplankton dies before it is eaten, it descends through the euphotic zone as part of the marine snow and settles into the depths of sea. In this way, phytoplankton sequester about 2 billion tons of carbon dioxide into the ocean each year, causing the ocean to become a sink of carbon dioxide holding about 90% of all sequestered carbon. The ocean produces about half of the world's oxygen and stores 50 times more carbon dioxide than the atmosphere. An ecosystem cannot be understood without knowledge of how its food web determines the flow of materials and energy. Phytoplankton autotrophically produces biomass by converting inorganic compounds into organic ones. In this way, phytoplankton functions as the foundation of the marine food web by supporting all other life in the ocean. The second central process in the marine food web is the microbial loop. This loop degrades marine bacteria and archaea, remineralises organic and inorganic matter, and then recycles the products either within the pelagic food web or by depositing them as marine sediment on the seafloor. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 60927729 (xsd:integer)
dbo:wikiPageLength
  • 158244 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1121337276 (xsd:integer)
dbo:wikiPageWikiLink
dbp:align
  • left (en)
  • right (en)
dbp:caption
  • Food web reconstruction by DNA barcodes at the coral reef of Moorea, French Polynesia. Dietary partitioning among three predatory fish species as detected using metabarcoding dietary analysis. The taxonomic resolution provided by the metabarcoding approach highlights a complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. (en)
  • The viral shunt pathway facilitates the flow of dissolved organic matter and particulate organic matter through the marine food web (en)
  • ---- 16px Pteropods: Swimming snails of the sea (en)
  • Phytoplankton convert CO2, which has dissolved from the atmosphere into the surface oceans into particulate organic carbon during primary production. Phytoplankton are then consumed by krill and small zooplankton grazers, which in turn are preyed upon by higher trophic levels. Any unconsumed phytoplankton form aggregates, and along with zooplankton faecal pellets, sink rapidly and are exported out of the mixed layer. Krill, zooplankton and microbes intercept phytoplankton in the surface ocean and sinking detrital particles at depth, consuming and respiring this POC to CO2 , such that only a small proportion of surface-produced carbon sinks to the deep ocean . As krill and smaller zooplankton feed, they also physically fragment particles into small, slower- or non-sinking pieces , retarding POC export. This releases dissolved organic carbon either directly from cells or indirectly via bacterial solubilisation . Bacteria can then remineralise the DOC to DIC . Diel vertically migrating krill, smaller zooplankton and fish can actively transport carbon to depth by consuming POC in the surface layer at night, and metabolising it at their daytime, mesopelagic residence depths. Depending on species life history, active transport may occur on a seasonal basis as well. (en)
  • Generalized food web for some of the major waterbirds that frequent the Chesapeake Bay. Food sources and habitats of waterbirds are affected by multiple factors, including exotic and invasive species. (en)
  • Gray arrows: flow of carbon to heterotrophs (en)
  • The giant virus CroV attacks C.roenbergensis (en)
  • The ochre starfish is a keystone predator (en)
  • Taxonomic phylogram derived from ToL-metabarcoding of eukaryotic diversity around the coral reefs at Coral Bay in Australia. Bar graphs indicate the number of families in each phyla, coloured according to kingdom. (en)
  • The bacterium Marinomonas arctica grows inside Arctic sea ice at subzero temperatures (en)
  • Sea otters predate sea urchins, making them a keystone species for kelp forests (en)
  • The minute but ubiquitous and highly active bacterium Prochlorococcus runs through its life cycle in one day, yet collectively generates about 20% of all global oxygen. (en)
  • Walrus are keystone species in the Arctic but are not found in the Antarctic. (en)
  • HCIL: heterotrophic ciliates; MCIL: mixotrophic ciliates; HNF: heterotrophic nanoflagellates; DOC: dissolved organic carbon; HDIN: heterotrophic dinoflagellates (en)
  • Connections between the different compartments of the living and the nonliving environment (en)
  • California mussels displace most other species unless ochre starfish control their numbers (en)
  • A Mavirus virophage lurking alongside a giant CroV (en)
  • Contemporary arctic marine food web with a greater focus on the role of microorganisms (en)
  • Green arrows: major pathways of carbon flow to or from mixotrophs (en)
  • Ecosystem services provided by filter feeding bivalves often resident in estuaries, in the form of nutrient extraction from phytoplankton. Blue mussels are used in the example but other bivalves like oysters also provide these nutrient extraction services. (en)
  • Example food web from an estuary, the Venice Lagoon, involving 27 nodes or functional groups. Colors of flows depict different fishing target and non-target species . (en)
  • Yellow arrows: flow of energy from the sun to photosynthetic organisms (en)
  • By contrast, a single bristlecone pine can tie up a lot of relatively inert biomass for thousands of years with little photosynthetic activity. (en)
  • Cafeteria roenbergensis a bacterivorous marine flagellate (en)
  • Sea urchins damage kelp forests by chewing through kelp holdfasts (en)
  • Cumulative visualization of a number of seagrass food webs from different regions and with different eutrophication levels Different coloured dots represent trophic groups from different trophic levels with black  =  primary producers, dark to light grey  =  secondary producers, and the lightest grey being top predators. The grey links represent feeding links. (en)
dbp:direction
  • horizontal (en)
dbp:footer
  • 16 (xsd:integer)
  • 420 (xsd:integer)
  • Pteropods and brittle stars form the base of Arctic food webs (en)
dbp:footerAlign
  • center (en)
dbp:footerBackground
  • #e4e4e4 (en)
dbp:header
  • dbr:Coral_reef
  • dbr:Estuaries
  • dbr:Seagrass_meadows
  • Seabird colonies (en)
  • Marine producers use less biomass than terrestrial producers (en)
  • Arctic food web with mixotrophy (en)
  • Chesapeake waterbird food web (en)
  • Continental shelves Puffins and herrings (en)
  • Coral reef diversity (en)
  • DOM, POM and the viral shunt (en)
  • Effects of ocean acidification (en)
  • Filter feeding bivalves (en)
  • Penguins and polar bears never meet (en)
  • Polar bear food webs (en)
  • Polar topographies (en)
  • Sponge reefs (en)
  • Importance of Antarctic krill in biogeochemical cycles (en)
dbp:headerAlign
  • center (en)
dbp:image
  • Viral shunt.jpg (en)
  • Kaiserpinguine mit Jungen.jpg (en)
  • FMIB 52630 Ophiopholis aculeata.jpeg (en)
  • Fis01026 .jpg (en)
  • Importance of Antarctic krill in biogeochemical cycles.png (en)
  • Marine connections between the living and the nonliving.png (en)
  • Cafeteria roenbergensis FENCHEL and D J PATTERSON schematic drawing.svg (en)
  • Nutrient extraction services provided by bivalves.png (en)
  • Taxonomic phylogram of eukaryotic diversity at Coral Bay in West Australia.png (en)
  • Arctic food web with mixotrophy.png (en)
  • Arctic marine food web 2.jpg (en)
  • Arctic marine food web.jpg (en)
  • Atlantic puffin and herring food chain.png (en)
  • California Mussels .jpg (en)
  • California Sea Otter.jpg (en)
  • Chesapeake Waterbird Food Web.jpg (en)
  • CroV TEM .jpg (en)
  • Food web of the Venice lagoon.png (en)
  • Food web reconstruction by DNA barcodes.jpg (en)
  • Generalised food web for sponge reefs.jpg (en)
  • Giant virus CroV with its virophage Mavirus.png (en)
  • Globe showing Antarctic 2.png (en)
  • Globe showing Arctic 2.png (en)
  • Gnarly Bristlecone Pine .jpg (en)
  • Marinomonas arctica.jpg (en)
  • Noaa-walrus17.jpg (en)
  • Polar Bear 2004-11-15.jpg (en)
  • Prochlorococcus marinus .jpg (en)
  • Réseau trophique en eaux côtières.jpg (en)
  • Sea angel.jpg (en)
  • Sea star at low tide.jpg (en)
  • Seabird ornitheutrophication coupling.png (en)
  • Strongylocentrotus franciscanus.jpg (en)
  • Visualization of an aggregation of seagrass food webs.png (en)
dbp:width
  • 152 (xsd:integer)
  • 154 (xsd:integer)
  • 166 (xsd:integer)
  • 170 (xsd:integer)
  • 172 (xsd:integer)
  • 188 (xsd:integer)
  • 200 (xsd:integer)
  • 202 (xsd:integer)
  • 210 (xsd:integer)
  • 230 (xsd:integer)
  • 240 (xsd:integer)
  • 250 (xsd:integer)
  • 259 (xsd:integer)
  • 270 (xsd:integer)
  • 275 (xsd:integer)
  • 300 (xsd:integer)
  • 315 (xsd:integer)
  • 320 (xsd:integer)
  • 400 (xsd:integer)
  • 440 (xsd:integer)
  • 520 (xsd:integer)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Compared to terrestrial environments, marine environments have biomass pyramids which are inverted at the base. In particular, the biomass of consumers (copepods, krill, shrimp, forage fish) is larger than the biomass of primary producers. This happens because the ocean's primary producers are tiny phytoplankton which grow and reproduce rapidly, so a small mass can have a fast rate of primary production. In contrast, many significant terrestrial primary producers, such as mature forests, grow and reproduce slowly, so a much larger mass is needed to achieve the same rate of primary production. (en)
  • Un réseau trophique marin est une chaîne alimentaire, dont les êtres vivants évoluent dans un milieu aquatique salé. Ces organismes marins sont à la fois consommateurs et producteurs : ils constituent les maillons d'un réseau trophique spécifique à l'environnement marin. L'étude des réseaux trophiques marins met en évidence des liens entre les espèces de la biocénose marine, allant du tout petit (bactérie, organisme unicellulaire ou algue microscopique constituant la base de pyramide alimentaire) à des formes de vie plus imposantes comme les "grands prédateurs" (requins, thons...). (fr)
rdfs:label
  • Réseau trophique marin (fr)
  • Marine food web (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License