An Entity of Type: Function113783816, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, the Laplacian of the indicator of the domain D is a generalisation of the derivative of the Dirac delta function to higher dimensions, and is non-zero only on the surface of D. It can be viewed as the surface delta prime function. It is analogous to the second derivative of the Heaviside step function in one dimension. It can be obtained by letting the Laplace operator work on the indicator function of some domain D.

Property Value
dbo:abstract
  • In mathematics, the Laplacian of the indicator of the domain D is a generalisation of the derivative of the Dirac delta function to higher dimensions, and is non-zero only on the surface of D. It can be viewed as the surface delta prime function. It is analogous to the second derivative of the Heaviside step function in one dimension. It can be obtained by letting the Laplace operator work on the indicator function of some domain D. The Laplacian of the indicator can be thought of as having infinitely positive and negative values when evaluated very near the boundary of the domain D. From a mathematical viewpoint, it is not strictly a function but a generalized function or measure. Similarly to the derivative of the Dirac delta function in one dimension, the Laplacian of the indicator only makes sense as a mathematical object when it appears under an integral sign; i.e. it is a distribution function. Just as in the formulation of distribution theory, it is in practice regarded as a limit of a sequence of smooth functions; one may meaningfully take the Laplacian of a bump function, which is smooth by definition, and let the bump function approach the indicator in the limit. (en)
dbo:thumbnail
dbo:wikiPageID
  • 37670148 (xsd:integer)
dbo:wikiPageLength
  • 30174 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1116416612 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, the Laplacian of the indicator of the domain D is a generalisation of the derivative of the Dirac delta function to higher dimensions, and is non-zero only on the surface of D. It can be viewed as the surface delta prime function. It is analogous to the second derivative of the Heaviside step function in one dimension. It can be obtained by letting the Laplace operator work on the indicator function of some domain D. (en)
rdfs:label
  • Laplacian of the indicator (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License