dbo:abstract
|
- In differential geometry, algebraic geometry, and gauge theory, the Kobayashi–Hitchin correspondence (or Donaldson–Uhlenbeck–Yau theorem) relates stable vector bundles over a complex manifold to Einstein–Hermitian vector bundles. The correspondence is named after Shoshichi Kobayashi and Nigel Hitchin, who independently conjectured in the 1980s that the moduli spaces of stable vector bundles and Einstein–Hermitian vector bundles over a complex manifold were essentially the same. This was proven by Simon Donaldson for projective algebraic surfaces and later for projective algebraic manifolds, by Karen Uhlenbeck and Shing-Tung Yau for compact Kähler manifolds, and independently by Buchdahl for non-Kahler compact surfaces, and by Jun Li and Yau for arbitrary compact complex manifolds. The theorem can be considered a vast generalisation of the Narasimhan–Seshadri theorem concerned with the case of compact Riemann surfaces, and has been influential in the development of differential geometry, algebraic geometry, and gauge theory since the 1980s. In particular the Hitchin–Kobayashi correspondence inspired conjectures leading to the nonabelian Hodge correspondence for Higgs bundles, as well as the Yau–Tian–Donaldson conjecture about the existence of Kähler–Einstein metrics on Fano varieties, and the Thomas–Yau conjecture about existence of special Lagrangians inside isotopy classes of Lagrangian submanifolds of a Calabi–Yau manifold. (en)
- 微分幾何学において、小林・ヒッチン対応 (こばやし・ヒッチンたいおう、Kobayashi–Hitchin correspondence) は、複素多様体上のをに関連付ける。対応の名前は小林昭七とに因んでいる。彼らは1980年代に独立に次のことを予想した:複素多様体上のアインシュタイン・エルミットベクトル束と安定ベクトル束のモジュライ空間は本質的に同じである。これはDonaldsonによって代数曲面と後にに対して証明され、Uhlenbeck と Yau によってケーラー多様体に対して証明され、Li と Yau によって複素多様体に対して証明された。 (ja)
|