dbo:abstract
|
- En física, l'electró (símbol e-) és una partícula subatòmica amb una càrrega elèctrica elemental negativa. Se sol definir com una partícula elemental perquè no té uns components o una subestructura coneguts. Té una massa que és aproximadament 1/1836 vegades la del protó. El moment angular (espín) intrínsec de l'electró és un valor semienter en unitats de ħ, la qual cosa significa que és un fermió. La seva antipartícula s'anomena positró: és idèntica excepte pel fet que té càrregues –entre elles, l'elèctrica– del signe oposat. Quan un electró col·lideix amb un positró, les dues partícules poden resultar totalment anihilades i produir fotons de raigs gamma. Els electrons, que pertanyen a la primera generació de la família de partícules dels leptons, participen en les interaccions fonamentals gravitatòria, electromagnètica i nuclear feble. Com tota la matèria, tenen propietats mecanicoquàntiques tant de partícules com d'ones, de tal manera que poden col·lidir amb altres partícules i poden ser difractades com la llum. Aquesta dualitat es demostra d'una millor manera en experiments amb electrons a causa de la seva ínfima massa. Com que un electró és un fermió, de cap manera dos electrons poden ocupar el mateix estat quàntic, segons el principi d'exclusió de Pauli. El concepte d'una quantitat indivisible de càrrega elèctrica fou teoritzat per explicar les propietats químiques dels àtoms; el primer a treballar-ho fou el filòsof naturalista britànic Richard Laming l'any 1838. El nom «electró» per aquesta càrrega fou introduït el 1894 pel físic irlandès George Johnstone Stoney. L'electró fou identificat com una partícula l'any 1897 per Joseph John Thomson i el seu equip de físics britànics. En molts fenòmens físics –com ara l'electricitat, el magnetisme o la conductivitat tèrmica– els electrons tenen un paper essencial. Un electró que es mou en relació a un observador genera un camp elèctric i és desviat per camps magnètics externs. Quan s'accelera un electró, pot absorbir o radiar energia en forma de fotons. Els electrons, juntament amb nuclis atòmics formats de protons i neutrons, formen els àtoms; tanmateix, els electrons contribueixen amb menys d'un 0,06% a la massa total d'aquests. La mateixa força de Coulomb que causa l'atracció entre protons i electrons també fa que els electrons quedin . L'intercanvi o compartició d'electrons entre dos o més àtoms és la causa principal de l'enllaç químic. Els electrons poden ser creats mitjançant la desintegració beta d'isòtops radioactius i en col·lisions d'alta energia com, per exemple, l'entrada d'un raig còsmic a l'atmosfera. D'altra banda, poden ser destruïts per anihilació amb positrons, i poden ser absorbits durant la nucleosíntesi estel·lar. Existeixen instruments de laboratori capaços de contenir i observar electrons individuals així com plasma d'electrons; a més, alguns telescopis poden detectar plasma d'electrons a l'espai exterior. Els electrons tenen moltes aplicacions, entre elles l'electrònica, la soldadura, els tubs de raigs catòdics, els microscopis electrònics, la radioteràpia, els làsers, els detectors d'ionització gasosa i els acceleradors de partícules. (ca)
- Elektron je subatomární částice se záporným elektrickým nábojem. Elektrony tvoří obal atomu kolem atomového jádra. Elektrony jsou nositeli náboje při vedení elektrického proudu v kovech, polovodičích (majoritní v typu N) a v elektrických výbojích v plynech i ve vakuu (např. katodové záření). Také radioaktivní záření beta (β–) je tvořeno elektrony. Elektron jakožto elementární částice patří mezi leptony, tj. mezi částice, které nejsou schopny silné interakce, ale pouze elektromagnetické a slabé interakce. Protože má polovinový spin, jedná se o fermion a řídí se Fermiho–Diracovou statistikou - platí pro něj Pauliho vylučovací princip. Slovo elektron pochází z řeckého slova „jantar“ (ήλεκτρον), který zavedl William Gilbert. Elektrické jevy poprvé popsal Thales Milétský na vlastnostech jantarového nástroje, užívaného při předení lnu. (cs)
- الإلكترون أو الجسيم الكهربي (بالإنجليزية: Electron) (رمزه: -e) هو جسيم دون ذري كروي الشكل تقريباً مكون للذرة ويحمل شحنة كهربائية سالبة. ولم يكن من المعروف بأن لديها مكونات أو جسيمات أصغر، لذا فقد اعتبرت بأنها جسيمات أولية. فالإلكترون لديه كتلة تعادل تقريبًا 1/1836 من كتلة البروتون. الزخم الزاوي الحقيقي (وهو اللف المغزلي) للإلكترون هو قيمة نصف عدد صحيح من وحدة ħ، مما يعني بأنه فرميون. ويسمى الجسيم المضاد للإلكترون بالبوزيترون، وهو مطابق للإلكترون عدا أنه معاكس له بالشحنة الكهربائية والشحنات الأخرى. عند اصطدام الإلكترون بالبوزترون فإنهما إما يبعثران بعضهما البعض أو أن يفنيان، مما ينتج عن ذلك زوج أو أكثر من فوتونات أشعة غاما. تنتمي الإلكترونات إلى الجيل الأول لأسرة جسيمات ليبتون، وتسهم في القوى الأساسية وهي الجاذبية والكهرومغناطيسية والقوة النووية الضعيفة. كما هو في المادة فإن الإلكترون لديه خصائص ازدواجية موجة-جسيم في ميكانيكا الكم، لذا فبإمكانه الاصطدام مع الجسيمات الأخرى فينحرف مثل الضوء. لكن وبسبب صغر كتلة الإلكترون فإن تلك الازدواجية تتجلى بشكل أفضل في التجارب المخبرية. وبما أنها تندرج تحت عائلة الفرميون، وبحسب مبدأ استبعاد باولي فلا يمكن لإلكترونين أن يأخذا نفس حالة الكم. تم وضع نظرية مفهوم مقدار الشحنة الإلكترونية غير القابلة للتجزئة لشرح الخصائص الكيميائية للذرات، فكانت بدايتها سنة 1838 مع عالم الطبيعة البريطاني ريتشارد لامنج؛ ثم قدم الفيزيائي الإيرلندي جورج ستوني اسم «إلكترون» وذلك سنة 1894. في سنة 1897 عرّف البريطاني جوزيف طومسون وفريقه من الفيزيائيين الإلكترون بأنه جسيم. العديد من الظواهر الفيزيائية، مثل الكهرباء والمغناطيسية والتوصيل الحراري فإن الإلكترونات لها دورًا أساسيًا في ذلك. فالإلكترون في حركته بالنسبة للمراقب يولد المجال المغناطيسي، وكذلك فإن المجالات المغناطيسية الخارجية تجعلها تنحرف. فعندما يتحرك الإلكترون فإنه يمتص أو ينتج طاقة على شكل فوتونات. تحيط الإلكترونات بالنواة المتكونة من بروتونات ونيوترونات، فيكونون جميعًا الذرة، وإن كان الإلكترون يسهم في أقل من 0.06% من الكتلة الكلية للذرة. يسبب جاذبية قوة كولومب بين الإلكترون والبروتون بأن يجعل الإلكترونات مرتبطة بالذرات. فالتبادل أو تقاسم الإلكترونات في ما بين الذرات هو السبب الرئيسي للروابط الكيميائية. فحسب النظريات فإن معظم الإلكترونات قد تكونت في لحظة الانفجار العظيم، ولكن يمكن أيضًا إنتاجها خلال البلى بيتائي للنظائر المشعة والاصطدامات عالية الطاقة، وفي لحظة دخول الأشعة الكونية للغلاف الجوي. وخلال إفناءه مع البوزيترون فقد يتعرض الإلكترون للدمار، وقد يتعرض للامتصاص خلال تفاعلات الانصهار النجمية. ويمكن لأدوات المختبرات احتواء ومراقبة الإلكترونات الفردية وكذلك في بلازما الإلكترونات، حيث كرس لها المقراب للكشف عن بلازما الإلكترونات في الفضاء الخارجي. وتوجد العديد من تطبيقات الإلكترون كما هو في اللحام وأنبوب الأشعة المهبطية ومعجلات الجسيمات ومجهر إلكتروني وعلاج إشعاعي والليزر الإلكتروني. (ar)
- Das Elektron (IPA: [ˈeːlɛktrɔn, eˈlɛk-, elɛkˈtroːn], , , ; von altgriechisch ἤλεκτρον élektron „Bernstein“, an dem Elektrizität schon in der Antike untersucht wurde; 1874 von Stoney und Helmholtz geprägt) ist ein negativ geladenes Elementarteilchen. Sein Symbol ist e−. Die alternative Bezeichnung Negatron (aus negative Ladung und Elektron) wird kaum noch verwendet und ist allenfalls in der Beta-Spektroskopie gebräuchlich. Die in einem Atom oder Ion gebundenen Elektronen bilden dessen Elektronenhülle. Die gesamte Chemie beruht im Wesentlichen auf den Eigenschaften und Wechselwirkungen dieser gebundenen Elektronen. In Metallen ist ein Teil der Elektronen frei beweglich und bewirkt die hohe elektrische Leitfähigkeit metallischer Leiter. Dies ist die Grundlage der Elektrotechnik und der Elektronik. In Halbleitern ist die Zahl der beweglichen Elektronen und damit die elektrische Leitfähigkeit leicht zu beeinflussen, sowohl durch die Herstellung des Materials als auch später durch äußere Einflüsse wie Temperatur, elektrische Spannung, Lichteinfall etc. Dies ist die Grundlage der Halbleiterelektronik. Aus jedem Material können bei starker Erhitzung oder durch Anlegen eines starken elektrischen Feldes Elektronen austreten (Glühemission, Feldemission). Als freie Elektronen können sie dann im Vakuum durch weitere Beschleunigung und Fokussierung zu einem Elektronenstrahl geformt werden. Dies hat die Entwicklung von Kathodenstrahlröhren (CRTs) für Oszilloskope, Fernseher und Computermonitore ermöglicht. Weitere Anwendungen freier Elektronen sind z. B. die Röntgenröhre, das Elektronenmikroskop, das Elektronenstrahlschweißen, physikalische Grundlagenforschung mittels Teilchenbeschleunigern und die Erzeugung von Synchrotronstrahlung für Forschungs- und technische Zwecke. Beim Beta-Minus-Zerfall eines Atomkerns wird ein Elektron neu erzeugt und ausgesandt. Der experimentelle Nachweis des Elektrons gelang erstmals Emil Wiechert im Jahre 1897 und wenig später Joseph John Thomson. (de)
- Το ηλεκτρόνιο είναι ένα από τα θεμελιώδη υποατομικά σωματίδια της ύλης, το οποίο φέρει αρνητικό ηλεκτρικό φορτίο. Είναι λεπτόνιο με σπιν 1/2 και μάζα 1,836 × 103 φορές μικρότερη από το πρωτόνιο. Τα ηλεκτρόνια μαζί με τους ατομικούς πυρήνες σχηματίζουν τα άτομα. Τα ηλεκτρόνια μπορεί να θεωρηθεί πως περιστρέφονται ταχύτατα γύρω από τον πυρήνα των ατόμων σε συγκεκριμένες, ομοεστιακές και μη συμπίπτουσες ενεργειακές τροχιές, τις στιβάδες, όπως περιστρέφονται οι πλανήτες σε ένα ηλιακό σύστημα. Ο εκάστοτε αριθμός και η διάταξη των ηλεκτρονίων στις ατομικές ενεργειακές στιβάδες καθορίζουν τις χημικές ιδιότητες των στοιχείων, ενώ η παγίδευσή τους σε τροχιές γύρω από πυρήνες και γειτονικών ατόμων, σε επιτρεπόμενες στιβάδες, δημιουργεί τους χημικούς δεσμούς. Σήμερα δεν θεωρείται πως τα ηλεκτρόνια περιφέρονται πραγματικά στις τροχιές που καθορίζουν ενεργειακά οι στιβάδες αλλά πως βρίσκονται σε θέσεις που δεν είναι δυνατό να είναι απόλυτα γνωστές και έχουν σχήμα νέφους πιθανοτήτων. Ακόμα και στην περίπτωση που έχουμε ένα ηλεκτρόνιο γύρω από ένα πρωτόνιο, (δηλαδή σε ένα άτομο υδρογόνου), το ηλεκτρόνιο περιγράφεται ως ένα νέφος πιθανοτήτων γύρω από τον πυρήνα που είναι πιο πυκνό κοντά στην απόσταση της στιβάδας που του αναλογεί ενεργειακά. Η ροή ηλεκτρονίων μέσω αγωγού δημιουργεί το ηλεκτρικό ρεύμα. (el)
- La elektrono (aŭ negatono) estas fundamenta subatoma partiklo, kiu portas negativan elektran ŝargon. Ĝi estas leptono, kiu partoprenas en elektromagnetaj interagoj, kaj ĝia maso estas malpli ol unu milono el la maso de la plej eta atomo. Ĝia elektra ŝargo difiniĝas konvencie esti negativa, kun valoro de −1 en atomaj unitoj. Kune kun atomaj nukleoj, elektronoj konsistigas atomojn; iliaj interagoj kun apudaj nukleoj estas la ĉefa kaŭzo de kemia ligado. (eo)
- En física, el electrón (del griego clásico ἤλεκτρον ḗlektron 'ámbar'), comúnmente representado por el símbolo e−, es una partícula subatómica con una carga eléctrica elemental negativa. Un electrón no tiene componentes o subestructura conocidos; en otras palabras, generalmente se define como una partícula elemental. En la teoría de cuerdas se dice que un electrón se encuentra formado por una subestructura (cuerdas). Tiene una masa que es aproximadamente 1836 veces menor que la del protón. El momento angular (espín) intrínseco del electrón es un valor semientero en unidades de ħ, lo que significa que es un fermión. Su antipartícula es denominada positrón: es idéntica excepto por el hecho de que tiene cargas —entre ellas, la eléctrica— de signo opuesto. Cuando un electrón colisiona con un positrón, las dos partículas pueden resultar totalmente aniquiladas y producir fotones de rayos gamma. Los electrones, que pertenecen a la primera generación de la familia de partículas de los leptones, participan en las interacciones fundamentales, tales como la gravedad, el electromagnetismo y la fuerza nuclear débil. Como toda la materia, poseen propiedades mecánico-cuánticas tanto de partículas como de ondas, de tal manera que pueden colisionar con otras partículas y pueden ser difractadas como la luz. Esta dualidad se demuestra de una mejor manera en experimentos con electrones a causa de su ínfima masa. Como los electrones son fermiones, dos de ellos no pueden ocupar el mismo estado cuántico, según el principio de exclusión de Pauli. El concepto de una cantidad indivisible de carga eléctrica fue teorizado para explicar las propiedades químicas de los átomos. El primero en trabajarlo fue el filósofo naturalista británico Richard Laming en 1838. El nombre electrón para esta carga fue introducido en 1894 por el físico irlandés George Johnstone Stoney. Sin embargo, el electrón no fue identificado como una partícula hasta 1897 por Joseph John Thomson y su equipo de físicos británicos. En muchos fenómenos físicos —tales como la electricidad, el magnetismo o la conductividad térmica— los electrones tienen un papel esencial. Un electrón en movimiento genera un campo electromagnético y es a su vez desviado por los campos electromagnéticos externos. Cuando se acelera un electrón, puede absorber o irradiar energía en forma de fotones. Los electrones, junto con núcleos atómicos formados de protones y neutrones, conforman los átomos. Sin embargo, los electrones contribuyen con menos de un 0,06 % a la masa total de los átomos. La misma fuerza de Coulomb, que causa la atracción entre protones y electrones, también hace que los electrones queden enlazados. El intercambio o compartición de electrones entre dos o más átomos es la causa principal del enlace químico. Los electrones pueden ser creados mediante la desintegración beta de isótopos radiactivos y en colisiones de alta energía como, por ejemplo, la entrada de un rayo cósmico en la atmósfera. Por otra parte, pueden ser destruidos por aniquilación con positrones, y pueden ser absorbidos durante la nucleosíntesis estelar. Existen instrumentos de laboratorio capaces de contener y observar electrones individuales, así como plasma de electrones. Además, algunos telescopios pueden detectar plasma de electrones en el espacio exterior. Los electrones tienen muchas aplicaciones, entre ellas la electrónica, la soldadura, los tubos de rayos catódicos, los microscopios electrónicos, la radioterapia, los láseres, los detectores de ionización gaseosa y los aceleradores de partículas. (es)
- The electron (e− or β−) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy. Electrons play an essential role in numerous physical phenomena, such as electricity, magnetism, chemistry and thermal conductivity, and they also participate in gravitational, electromagnetic and weak interactions. Since an electron has charge, it has a surrounding electric field, and if that electron is moving relative to an observer, said observer will observe it to generate a magnetic field. Electromagnetic fields produced from other sources will affect the motion of an electron according to the Lorentz force law. Electrons radiate or absorb energy in the form of photons when they are accelerated.Laboratory instruments are capable of trapping individual electrons as well as electron plasma by the use of electromagnetic fields. Special telescopes can detect electron plasma in outer space. Electrons are involved in many applications such as tribology or frictional charging, electrolysis, electrochemistry, battery technologies, electronics, welding, cathode-ray tubes, photoelectricity, photovoltaic solar panels, electron microscopes, radiation therapy, lasers, gaseous ionization detectors and particle accelerators. Interactions involving electrons with other subatomic particles are of interest in fields such as chemistry and nuclear physics. The Coulomb force interaction between the positive protons within atomic nuclei and the negative electrons without, allows the composition of the two known as atoms. Ionization or differences in the proportions of negative electrons versus positive nuclei changes the binding energy of an atomic system. The exchange or sharing of the electrons between two or more atoms is the main cause of chemical bonding. In 1838, British natural philosopher Richard Laming first hypothesized the concept of an indivisible quantity of electric charge to explain the chemical properties of atoms. Irish physicist George Johnstone Stoney named this charge 'electron' in 1891, and J. J. Thomson and his team of British physicists identified it as a particle in 1897 during the cathode-ray tube experiment. Electrons can also participate in nuclear reactions, such as nucleosynthesis in stars, where they are known as beta particles. Electrons can be created through beta decay of radioactive isotopes and in high-energy collisions, for instance when cosmic rays enter the atmosphere. The antiparticle of the electron is called the positron; it is identical to the electron except that it carries electrical charge of the opposite sign. When an electron collides with a positron, both particles can be annihilated, producing gamma ray photons. (en)
- Elektroia (grezieratik: ἤλεκτρον ḗlektron «anbar») partikula subatomikoa da. e- edo β- ikurrarekin adierazten da eta karga elektriko elemental negatibo bakarra du. Elektroiak leptoien partikula-familiako lehen belaunaldiko partikulak dira. Gainera, oinarrizko partikulatzat hartzen dira, ez baitute osagai edo egitura ezagunik. Elektroiaren masa protoiarena baino 1863 aldiz txikiagoa da, gutxi gorabehera. Propietate kuantikoen artean, momentu angeluar intrintseko (spin) erdi osoa dauka, Planck-en konstante laburbilduaren unitatetan adierazia. Fermioiak dira-eta, Pauliren elkarrezintasunaren printzipioagatik, bi elektroi ezin dira egoera kuantiko berean egon. Oinarrizko partikula guztiek bezala, elektroiek uhin-partikula izaera dute, hau da, beste partikula batzuekin talka egin dezakete eta, aldi berean, argia bezala difraktatu daitezke. Neutroiek eta protoiek baino masa txikiagoa eta de Broglieren uhin-luzera handiagoa dutenez, elektroien uhin-izaera errazago behatu daiteke esperimentalki. Elektroiek hainbat fenomeno fisikotan dute eragina, hala nola elektrizitatean, magnetismoan, kimikan eta eroankortasun termikoan. Elkarrekintza ahulean, grabitazionalean eta elektromagnetikoan ere parte hartzen dute. Karga elektrikoa dutenez, eremu elektrikoa sortzen dute haien inguruan eta, higitzen ari badira, eremu magnetikoa ere bai. Horrez gain, beste karga batzuek sortutako eremu elektromagnetikoek elektroien higidura baldintzatzen dute Lorentzen indarraren adierazpena jarraituz. Elektroiek, azeleratzen direnean, energia irradiatu edo xurgatzen dute fotoien bidez. Laborategiko tresnek elektroi-plasma edo elektroi bakunak atzeman ditzakete eremu elektromagnetikoak erabiliz. Halaber, teleskopio berezi batzuek kanpo-espazioko elektroi-plasma antzeman dezakete. Elektroiek hainbat arlotan dute eragina, hala nola elektronikan, soldaduran, katodo-izpidun hodietan, elektroi-mikroskopioetan, erradioterapian, laserretan, eta partikula-azeleragailuetan. Elektroien eta beste partikula subatomikoen arteko elkarrekintzak interesgarriak dira kimikan eta fisika nuklearrean. Nukleoko protoiek eta inguruan orbitatzen duten elektroiek, elkarren arteko Coulomben indarraren ondorioz, atomo izeneko konposatua osatzen dute. Ionizazioak, hau da, atomo bateko elektroi eta protoi kopurua ezberdina izateak, sistema atomikoaren aldatzen du. Bi edo atomo gehiagok beraien elektroiak trukatu edo partekatzean lotura kimikoak sortzen dira. 1838an, naturaren filosofo ingelesak egin zuen karga banaezinaren lehen hipotesia, atomoen propietate kimikoak azaldu nahian. George Johnstone Stoney fisikari irlandarrak "elektroi" deitu zion karga horri 1891n, eta J. J. Thomson eta bere fisikari taldeak partikula bat zela ikusi zuten 1897an. Elektroiek erreakzio nuklearretan ere parte har dezakete, izarretan gertatzen den nukleosintesian adibidez. Erreakzio horietan beta partikula deitzen zaie. Elektroiak isotopo erradioaktiboen beta desintegrazio bidez eta energia handiko talketan sor daitezke. Elektroiaren antipartikulari positroi deritzo; elektroien berdinak dira baina kontrako zeinuko karga dute. Elektroi eta positroi banak elkarrekin talka egitean bi partikulak deuseztatu egin daitezke, gamma izpiak sortuz. (eu)
- L'électron, un des composants de l'atome avec les neutrons et les protons, est une particule élémentaire qui possède une charge élémentaire de signe négatif. Il est fondamental en chimie, car il participe à presque tous les types de réactions chimiques et constitue un élément primordial des liaisons présentes dans les molécules. En physique, l'électron intervient dans une multitude de rayonnements et d'effets. Ses propriétés, qui se manifestent à l'échelle microscopique, expliquent la conductivité électrique, la conductivité thermique, l'effet Tcherenkov, l'incandescence, l'induction électromagnétique, la luminescence, le magnétisme, le rayonnement électromagnétique, la réflexion optique, l'effet photovoltaïque et la supraconductivité, phénomènes macroscopiques largement exploités dans les pays industrialisés. Possédant la plus faible masse de toutes les particules chargées, il sert régulièrement à l'étude de la matière. Le concept d'une quantité indivisible de charge électrique est élaboré à partir de 1838 par le naturaliste britannique Richard Laming afin d'expliquer les propriétés chimiques des atomes. L'électron est identifié comme le corpuscule envisagé par Joseph John Thomson et son équipe de physiciens britanniques en 1897, à la suite de leurs travaux sur les rayons cathodiques. C'est à cette époque que Thomson propose son modèle atomique. En 1905, Albert Einstein propose une explication de l'effet photoélectrique — des électrons émis par la matière sous l'influence de la lumière — qui servira d'argument en faveur de la théorie des quanta. En 1912, Niels Bohr explique les raies spectrales en postulant la quantification de l'orbite des électrons de l'atome hydrogène, autre argument soutenant cette théorie. En 1914, les expériences d'Ernest Rutherford et d'autres ont solidement établi la structure de l'atome comme un noyau positivement chargé entouré d'électrons de masse plus faible. En 1923, les résultats expérimentaux d'Arthur Compton convainquent une majorité de physiciens de la validité de la théorie des quanta. En 1924, Wolfgang Pauli définit le principe d'exclusion de Pauli, ce qui implique que les électrons possèdent un spin. La même année, Louis de Broglie émet l'hypothèse, vérifiée plus tard, que les électrons présentent une dualité onde-corpuscule. En 1928, Paul Dirac publie son modèle de l'électron qui l'amènera à prédire l'existence du positon puis de l'antimatière. D'autres études des propriétés de l'électron ont mené à des théories plus complètes de la matière et du rayonnement. (fr)
- Is éard atá sa leictreon (tugtar neigeatrón air freisin; is é e− an gnáthchomhartha) ná cáithnín fo-adamhach. Taobh istigh den adamh a fhaightear na leictreoin, i g, ag timpeallú an núicléas (is de phrótóin agus de neodróin atá sé sin cumtha). Tá an lucht leictreach is lú ag na leictreoin, agus gineann siad sruth leictreach agus iad ag taisteal. Toisc go bhfuil baint ann idir an méid leictreon atá ag adamh agus a chuid tarraingt chuig adaimh eile, is bunúsach an pháirt a ghlacann an leictreon sa cheimic. (ga)
- Elektron adalah partikel subatom yang bermuatan negatif dan umumnya ditulis sebagai e-. Elektron tidak memiliki komponen dasar ataupun substruktur apapun yang diketahui, sehingga ia dipercayai sebagai partikel elementer. Elektron memiliki massa sekitar 1/1836 massa proton. Momentum sudut (spin) instrinsik elektron adalah setengah nilai integer dalam satuan ħ, yang berarti bahwa ia termasuk fermion. Antipartikel elektron disebut sebagai positron, yang identik dengan elektron, tetapi bermuatan positif. Ketika sebuah elektron bertumbukan dengan positron, keduanya kemungkinan dapat saling ataupun total, menghasilkan sepasang (atau lebih) foton sinar gama. Elektron, yang termasuk ke dalam generasi keluarga partikel lepton pertama, berpartisipasi dalam interaksi gravitasi, interaksi elektromagnetik dan interaksi lemah. Sama seperti semua materi, elektron memiliki sifat bak partikel maupun bak gelombang (dualitas gelombang-partikel), sehingga ia dapat bertumbukan dengan partikel lain dan berdifraksi seperti cahaya. Oleh karena elektron termasuk fermion, dua elektron berbeda tidak dapat menduduki keadaan kuantum yang sama sesuai dengan asas pengecualian Pauli. Konsep muatan listrik yang tidak dapat dibagi-bagi lagi diteorikan untuk menjelaskan sifat-sifat kimiawi atom oleh filsuf alam pada awal tahun 1838; nama electron diperkenalkan untuk menamakan muatan ini pada tahun 1894 oleh fisikawan Irlandia . Elektron berhasil diidentifikasikan sebagai partikel pada tahun 1897 oleh J. J. Thomson. Dalam banyak fenomena fisika, seperti listrik, magnetisme dan konduktivitas termal, elektron memainkan peran yang sangat penting. Suatu elektron yang bergerak relatif terhadap pengamat akan menghasilkan medan magnetik dan lintasan elektron tersebut juga akan dilengkungkan oleh medan magnetik eksternal. Ketika sebuah elektron dipercepat, ia dapat menyerap ataupun memancarkan energi dalam bentuk foton. Elektron bersama-sama dengan inti atom yang terdiri dari proton dan neutron, membentuk atom. Namun, elektron hanya mengambil 0,06% massa total atom. Gaya tarik Coulomb antara elektron dengan proton menyebabkan elektron terikat dalam atom. Pertukaran ataupun perkongsian elektron antara dua atau lebih atom merupakan sebab utama terjadinya ikatan kimia. Menurut teorinya, kebanyakan elektron dalam alam semesta diciptakan pada peristiwa Big Bang (ledakan besar), namun ia juga dapat diciptakan melalui peluruhan beta isotop radioaktif maupun dalam tumbukan berenergi tinggi, misalnya pada saat sinar kosmis memasuki atmosfer. Elektron dapat dihancurkan melalui pemusnahan dengan positron, maupun dapat diserap semasa nukleosintesis bintang. Peralatan-peralatan laboratorium modern dapat digunakan untuk memuat ataupun memantau elektron individual. Elektron memiliki banyak kegunaan dalam teknologi modern, misalnya dalam mikroskop elektron, terapi radiasi, dan pemercepat partikel. (in)
- ( 다른 뜻에 대해서는 전자 (동음이의) 문서를 참고하십시오.) 전자(電子, 영어: electron, e−, β−)는 음(-)의 기본 전하를 띠는 아원자 입자이다. 1세대 렙톤이고, 하위 구조나 하부 입자가 알려진 바가 없기 때문에 기본 입자로 여겨진다. 양성자보다 1836배 작은 질량을 가지고 있다. 양자역학적 속성으로 스핀이라 불리는 1/2만큼의 고유각운동량을 가진다. 동일한 를 가지는 입자가 존재할 수 없다는 파울리 배타 원리를 따르는 페르미온이다. 다른 기본입자들과 마찬가지로 파동-입자 이중성을 가진다. 전기, 자기, 화학, 열전도 등의 주요한 물리적 현상에 참여하며, 중력, 전자기력, 약한 상호작용의 영향을 받는다. 전하를 띄기 때문에 전기장을 형성하며, 관찰자와 상대적으로 움직이고 있을 경우 자기장이 관찰된다. 전기장과 자기장은 로런츠 법칙에 의해 상호 유도된다. 전자는 가속할 때 광자의 형태로 에너지를 방출하거나 흡수한다. 전자 플라즈마를 통해 개개의 전자를 포착할 수 있으며, 특수한 망원경은 우주 공간에서 날라오는 전자 플라즈마를 탐지할 수 있다. 전자공학, 브라운관, 방사선 치료, 레이저, 입자 가속기 등 다양한 범위에서 응용된다. 전자와 다른 아원자 입자와의 상호작용은 화학이나 핵물리학의 영역이다. 원자핵 내부의 양성자와 전자들은 정전기적 상호작용을 통해 원자를 구성한다. 두 개 이상의 원자는 전자를 공유함으로써 화학 결합을 형성할 수 있다. 1838년 영국의 자연철학자인 이 처음으로 원자의 화학적 성질을 설명하기 위해 전자라는 개념을 도입했고, 아일랜드의 물리학자 가 처음으로 베타 입자에 전자라는 이름을 붙인다. 전자는 방사성 동위 원소의 베타 붕괴나 고에너지 충돌 등으로 인해 자연적으로 발생한다. 전자의 반입자는 양전자라고 하며, 전하가 +1e인 것만 제외하면 모든 성질이 전자와 동일하다. 전자와 양전자가 충돌하는 경우 두 입자는 감마선을 만들어내며 소멸한다. (ko)
- L'elettrone è una particella subatomica con carica elettrica negativa che si ritiene essere una particella elementare. Insieme ai protoni e ai neutroni, è un componente dell'atomo e, sebbene contribuisca alla sua massa totale per meno dello 0,06%, ne caratterizza sensibilmente la natura e ne determina le proprietà chimiche: il legame chimico covalente si forma in seguito alla redistribuzione della densità elettronica tra due o più atomi.. Il moto dell'elettrone genera un campo magnetico, mentre la variazione della sua energia e della sua accelerazione causano l'emissione di fotoni; è inoltre responsabile della conduzione della corrente elettrica e del calore. La maggior parte degli elettroni presenti nell'universo è stata prodotta dal Big Bang, ma possono essere generati anche dal decadimento beta degli isotopi radioattivi e in collisioni ad alta energia, mentre possono essere annichilati dalla collisione con i positroni o assorbiti in un processo di nucleosintesi stellare. L'avvento dell'elettronica e il relativo sviluppo dell'informatica hanno reso l'elettrone protagonista dello sviluppo tecnologico del ventesimo secolo. Le sue proprietà vengono sfruttate in svariate applicazioni, come i tubi a raggi catodici, i microscopi elettronici, la radioterapia e il laser. (it)
- 電子(でんし、羅: 西: 英: electron)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子はスピン 1/2 のフェルミ粒子であり、電荷は −1 である。ワインバーグ=サラム理論における弱アイソスピンと弱超電荷は、左手電子が −1/2, −1/2 であり、右手電子は 0, −1 である。記号は e あるいは右肩に−を付け加え、e−と表記されることもある。また、反粒子として陽電子も存在する。 (ja)
- Elektron, negaton, e−, β− – trwała cząstka elementarna (lepton), jeden z elementów atomu. Elektron ma ładunek elektryczny równy e = −1,602 176 6208(98)×10−19 C (ujemny ładunek elektryczny elementarny – stąd też nazwa negaton) i masę spoczynkową me ≈ 9,109 382 91×10−31 kg. (pl)
- Het elektron (Oudgrieks: ἤλεκτρον, betekenis: barnsteen dat door wrijving elektrisch geladen werd) is een negatief geladen elementair deeltje, dat gebonden kan zijn, bijvoorbeeld in een atoom, of zich vrij in de ruimte kan bevinden. De ontdekking van het elektron in 1897 wordt toegeschreven aan Joseph John Thomson. Het elektron behoort tot de klasse der leptonen en daarmee tot de eerste generatie materie. Deze deeltjes zijn stabiel. Als een elektron zich in een elektrisch veld bevindt ondervindt het, net als een ion, daarvan invloed. Als het zich in een magnetisch veld voortbeweegt, ondervindt het de lorentzkracht. De hypothese van De Broglie, dat alle materie het karakter van een golf heeft waarvan de golflengte afhangt van de massa en de snelheid van het deeltje, geldt ook voor het elektron. (nl)
- O elétron(pt-BR) ou eletrão(pt-PT?) (do grego ήλεκτρον, élektron, "âmbar") é uma partícula subatômica, de símbolo e− ou β−, com carga elétrica negativa. Pertence à primeira geração da família dos léptons, e considera-se que são partículas elementares porque não possuem componentes conhecidos. A massa do elétron é aproximadamente 1/1836 da massa do próton. As propriedades quânticas do elétron incluem um momento angular intrínseco (spin) fracionário, o que significa que é um férmion. Portanto, dois elétrons não podem ocupar o mesmo estado quântico, de acordo com o princípio da exclusão de Pauli. Como toda matéria, possui propriedades de ondas e de corpúsculos: pode colidir com outras partículas, mas também pode ser difratado, assim como a luz. As são mais fáceis de se observar experimentalmente do que as de outras partículas como os nêutrons e prótons porque os elétrons têm uma massa menor e assim um comprimento de onda de Broglie maior. Os elétrons desempenham um papel essencial em muitos fenômenos físicos, tais como a eletricidade, o magnetismo e a condutividade térmica. Os elétrons estão sujeitos à ação de três interações fundamentais da natureza: a gravidade, a força eletromagnética e a força fraca. Por ter carga elétrica, um elétron gera um campo elétrico em sua vizinhança. Quando se move em relação a um observador gera também um campo magnético. Campos eletromagnéticos externos afetam um elétron por meio da força de Lorentz. Elétrons irradiam energia na forma de fótons quando acelerados. Elétrons são também essenciais em muitas aplicações tecnológicas, tais como a eletrônica, a soldagem, os tubos de raios catódicos, a microscopia eletrônica, a radioterapia, os lasers, os detectores de radiação ionizante e os aceleradores de partículas. Interações envolvendo elétrons e outras partículas subatômicas são de interesse da química e da física nuclear. A interação entre os prótons, localizados no núcleo atômico, e os elétrons por meio da força de Coulomb é responsável pela estrutura do átomo. As ligações químicas são devidas à troca ou compartilhamento de elétrons entre dois ou mais átomos. O filósofo natural foi o primeiro a teorizar o conceito de uma carga elétrica de quantidade indivisível para explicar as propriedades químicas dos átomos em 1838. O físico George Johnstone Stoney nomeou esta carga como ‘electron’ em 1891, enquanto que Joseph John Thomson e sua equipe identificaram a partícula em 1897. Os elétrons também podem participar em reações nucleares, tais como a nucleossíntese estelar, onde são conhecidos como partículas beta. Elétrons podem ser criados a partir do decaimento beta de isótopos radioativos e em colisões de alta energia, por exemplo quando os raios cósmicos entram na atmosfera terrestre. A antipartícula do elétron é denominada pósitron; tem muitas características idênticas às do elétron, mas sua carga elétrica é positiva. Quando um elétron colide com um pósitron, ambas as partículas são totalmente aniquiladas, produzindo fótons de raios gama. (pt)
- Электро́н (от др.-греч. ἤλεκτρον «янтарь») — субатомная частица (обозначается символом e− или β−), чей электрический заряд отрицателен и равен по модулю одному элементарному электрическому заряду. Электроны принадлежат к первому поколению лептонных частиц и обычно считаются фундаментальными частицами, поскольку у них нет известных компонентов или субструктур. Электрон имеет массу, которая составляет приблизительно массы протона. Квантово-механические свойства электрона включают собственный угловой момент (спин) полуцелого значения, выраженного в единицах приведённой постоянной Планка, ħ, что делает их фермионами. В связи с этим никакие два электрона не могут занимать одно и то же квантовое состояние в соответствии с принципом запрета Паули. Как и все элементарные частицы, электроны обладают свойствами как частиц, так и волн: они могут сталкиваться с другими частицами и могут дифрагировать как свет. Волновые свойства электронов легче наблюдать экспериментально, чем свойства других частиц, таких как нейтроны и протоны, потому что электроны имеют меньшую массу и, следовательно, большую длину волны де Бройля для равных энергий. Электроны играют существенную роль во многих физических явлениях, таких как электричество, магнетизм, химия и теплопроводность, а также участвуют в гравитационных, электромагнитных и слабых взаимодействиях. Поскольку электрон имеет заряд, его окружает электрическое поле, и если этот электрон движется относительно наблюдателя, то наблюдатель увидит также магнитное поле. Электромагнитные поля, создаваемые другими источниками, будут влиять на движение электрона в соответствии с законом Лоренца. Электроны излучают или поглощают энергию в виде фотонов при ускоренном движении. Лабораторные приборы способны улавливать отдельные электроны, а также электронную плазму с помощью электромагнитных полей. Специальные телескопы наблюдают электронную плазму в космическом пространстве. Свойства электронов используются во многих технологических процессах, приборах и устройствах, таких как трибология, электролиз, электрохимия, аккумуляторные технологии, электроника, сварка, электронно-лучевые трубки, фотоэлектричество, солнечные панели, электронные микроскопы, лучевая терапия, лазеры, и ускорители частиц. Взаимодействия электронов с другими субатомными частицами представляют интерес в химии и ядерной физике. Кулоновское взаимодействие между положительно заряженными протонами внутри атомных ядер и отрицательно заряженными электронами позволяет образовать из них атомы. Ионизация или различия в пропорциях отрицательного заряда электронов по сравнению с положительными зарядами ядер изменяют энергию связи атомной системы. Обмен или совместное использование электронов между двумя или более атомами является основной причиной химической связи. В 1838 году британский естествоиспытатель впервые выдвинул гипотезу о неделимом количестве электрического заряда для объяснения химических свойств атомов. Ирландский физик Джордж Джонстон Стони назвал этот заряд «электроном» в 1891 году, а Дж. Дж. Томсон и его команда британских физиков идентифицировали его как частицу в 1897 году во время эксперимента с электронно-лучевой трубкой. Электроны также могут участвовать в ядерных реакциях при нуклеосинтезе в звёздах, где они известны как бета-частицы. Электроны могут образовываться в результате бета-распада радиоактивных изотопов и при высокоэнергетических столкновениях, например, когда космические лучи попадают в атмосферу. Античастица электрона называется позитроном; он идентичен электрону, за исключением того, что несёт положительный электрический заряд. Когда , обе частицы могут аннигилировать, создавая фотоны гамма-излучения. (ru)
- En elektron, historiskt även känd som megatron eller negatron, är en elementarpartikel med en negativ laddning (elementarladdning). En atomkärna omgiven av elektroner bildar en atom. Elektroner är lätta partiklar; en proton är cirka 1 836 gånger tyngre än elektronen. Elektronens elektriska laddning är det negativa värdet av elementarladdningen (−1,602 × 10−19 C ) och dess massa är 9,109 × 10−31 kg (0,511 MeV/c2). Elektronen tillhör partikelfamiljen leptoner och har spinn 1/2, och är alltså en fermion, det vill säga att den beskrivs i statistisk mekanik med Fermi-Dirac-statistik. Elektronens magnetiska dipolmoment är ungefär en promille större än Bohrmagnetonen. Elektronen betecknas ofta med symbolen e−. Elektronens antipartikel heter positron och har samma egenskaper som elektronen men motsatt laddning. (sv)
- Електро́н (грец. Ηλεκτρόνιο, англ. electron, нім. Elektron) — стабільна, негативно заряджена елементарна частинка, що входить до складу всіх атомів. Має електричний заряд (−e = −1,6021892(46)×10−19 Кл) і масу (9,109554(906)×10−31 кг). Зазвичай електрон позначається в формулах символом e-. Бета-частинки, які є високоенергетичними електронами, що утворюються при бета-розпаді атомних ядер, позначаються символом β-. Електрон належить до родини лептонів, має електричний заряд −e, спін . Електрон є лептоном першого покоління, бере участь в електромагнітній, слабкій та гравітаційній взаємодіях. Фактор Ланде для електрона дорівнює 2, значення g-фактора −2,0023193043622(15). Античастинкою для електрона є позитрон. Через напівцілий спін електрон є ферміоном, і підкоряється статистиціФермі — Дірака. Електрон — хімічно активна складова атома, де вона пов'язана з електропозитивним ядром силами електростатичного притягання. Електрон — стабільна частинка, його час життя принаймні перевищує 1026 років. Питання про стабільність електрона зв'язане із законом збереження електричного заряду. (uk)
- 电子(英語:Electron)是一种带有负电的次原子粒子,通常标记为 。電子是第一代轻子,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子,根據泡利不相容原理,任何兩個電子都不能處於同樣的量子態。电子的反粒子是正电子,其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正电子會因碰撞而互相湮滅,並在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,則該原子会带电;称該帶電原子为离子。带正电的离子叫阳离子,其電子數小於質子數;带负电的离子叫阴离子,其電子數大於質子數。若物体的电子數不等於質子數,导致正负电量不平衡时,則称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的庫侖力能促使電子被束縛於原子內部,因此為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子不再被束縛於原子內部,而能够自由移动於原子以外的空間时,則稱此電子为自由电子。多個自由电子共同移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了重要角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會產生電磁輻射現象。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的,例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,像四極離子阱一類的精密尖端儀器,可以長時間束縛電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,利用磁場來約束住高熱電漿中的電子和離子,借以實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。 (zh)
|
rdfs:comment
|
- La elektrono (aŭ negatono) estas fundamenta subatoma partiklo, kiu portas negativan elektran ŝargon. Ĝi estas leptono, kiu partoprenas en elektromagnetaj interagoj, kaj ĝia maso estas malpli ol unu milono el la maso de la plej eta atomo. Ĝia elektra ŝargo difiniĝas konvencie esti negativa, kun valoro de −1 en atomaj unitoj. Kune kun atomaj nukleoj, elektronoj konsistigas atomojn; iliaj interagoj kun apudaj nukleoj estas la ĉefa kaŭzo de kemia ligado. (eo)
- Is éard atá sa leictreon (tugtar neigeatrón air freisin; is é e− an gnáthchomhartha) ná cáithnín fo-adamhach. Taobh istigh den adamh a fhaightear na leictreoin, i g, ag timpeallú an núicléas (is de phrótóin agus de neodróin atá sé sin cumtha). Tá an lucht leictreach is lú ag na leictreoin, agus gineann siad sruth leictreach agus iad ag taisteal. Toisc go bhfuil baint ann idir an méid leictreon atá ag adamh agus a chuid tarraingt chuig adaimh eile, is bunúsach an pháirt a ghlacann an leictreon sa cheimic. (ga)
- 電子(でんし、羅: 西: 英: electron)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子はスピン 1/2 のフェルミ粒子であり、電荷は −1 である。ワインバーグ=サラム理論における弱アイソスピンと弱超電荷は、左手電子が −1/2, −1/2 であり、右手電子は 0, −1 である。記号は e あるいは右肩に−を付け加え、e−と表記されることもある。また、反粒子として陽電子も存在する。 (ja)
- Elektron, negaton, e−, β− – trwała cząstka elementarna (lepton), jeden z elementów atomu. Elektron ma ładunek elektryczny równy e = −1,602 176 6208(98)×10−19 C (ujemny ładunek elektryczny elementarny – stąd też nazwa negaton) i masę spoczynkową me ≈ 9,109 382 91×10−31 kg. (pl)
- الإلكترون أو الجسيم الكهربي (بالإنجليزية: Electron) (رمزه: -e) هو جسيم دون ذري كروي الشكل تقريباً مكون للذرة ويحمل شحنة كهربائية سالبة. ولم يكن من المعروف بأن لديها مكونات أو جسيمات أصغر، لذا فقد اعتبرت بأنها جسيمات أولية. فالإلكترون لديه كتلة تعادل تقريبًا 1/1836 من كتلة البروتون. الزخم الزاوي الحقيقي (وهو اللف المغزلي) للإلكترون هو قيمة نصف عدد صحيح من وحدة ħ، مما يعني بأنه فرميون. ويسمى الجسيم المضاد للإلكترون بالبوزيترون، وهو مطابق للإلكترون عدا أنه معاكس له بالشحنة الكهربائية والشحنات الأخرى. عند اصطدام الإلكترون بالبوزترون فإنهما إما يبعثران بعضهما البعض أو أن يفنيان، مما ينتج عن ذلك زوج أو أكثر من فوتونات أشعة غاما. تنتمي الإلكترونات إلى الجيل الأول لأسرة جسيمات ليبتون، وتسهم في القوى الأساسية وهي الجاذبية والكهرومغناطيسية والقوة النووية الضعيفة. كما هو في المادة فإن الإلكترون ل (ar)
- En física, l'electró (símbol e-) és una partícula subatòmica amb una càrrega elèctrica elemental negativa. Se sol definir com una partícula elemental perquè no té uns components o una subestructura coneguts. Té una massa que és aproximadament 1/1836 vegades la del protó. El moment angular (espín) intrínsec de l'electró és un valor semienter en unitats de ħ, la qual cosa significa que és un fermió. La seva antipartícula s'anomena positró: és idèntica excepte pel fet que té càrregues –entre elles, l'elèctrica– del signe oposat. Quan un electró col·lideix amb un positró, les dues partícules poden resultar totalment anihilades i produir fotons de raigs gamma. (ca)
- Elektron je subatomární částice se záporným elektrickým nábojem. Elektrony tvoří obal atomu kolem atomového jádra. Elektrony jsou nositeli náboje při vedení elektrického proudu v kovech, polovodičích (majoritní v typu N) a v elektrických výbojích v plynech i ve vakuu (např. katodové záření). Také radioaktivní záření beta (β–) je tvořeno elektrony. Slovo elektron pochází z řeckého slova „jantar“ (ήλεκτρον), který zavedl William Gilbert. Elektrické jevy poprvé popsal Thales Milétský na vlastnostech jantarového nástroje, užívaného při předení lnu. (cs)
- Το ηλεκτρόνιο είναι ένα από τα θεμελιώδη υποατομικά σωματίδια της ύλης, το οποίο φέρει αρνητικό ηλεκτρικό φορτίο. Είναι λεπτόνιο με σπιν 1/2 και μάζα 1,836 × 103 φορές μικρότερη από το πρωτόνιο. Τα ηλεκτρόνια μαζί με τους ατομικούς πυρήνες σχηματίζουν τα άτομα. Τα ηλεκτρόνια μπορεί να θεωρηθεί πως περιστρέφονται ταχύτατα γύρω από τον πυρήνα των ατόμων σε συγκεκριμένες, ομοεστιακές και μη συμπίπτουσες ενεργειακές τροχιές, τις στιβάδες, όπως περιστρέφονται οι πλανήτες σε ένα ηλιακό σύστημα. Ο εκάστοτε αριθμός και η διάταξη των ηλεκτρονίων στις ατομικές ενεργειακές στιβάδες καθορίζουν τις χημικές ιδιότητες των στοιχείων, ενώ η παγίδευσή τους σε τροχιές γύρω από πυρήνες και γειτονικών ατόμων, σε επιτρεπόμενες στιβάδες, δημιουργεί τους χημικούς δεσμούς. (el)
- En física, el electrón (del griego clásico ἤλεκτρον ḗlektron 'ámbar'), comúnmente representado por el símbolo e−, es una partícula subatómica con una carga eléctrica elemental negativa. Un electrón no tiene componentes o subestructura conocidos; en otras palabras, generalmente se define como una partícula elemental. En la teoría de cuerdas se dice que un electrón se encuentra formado por una subestructura (cuerdas). Tiene una masa que es aproximadamente 1836 veces menor que la del protón. El momento angular (espín) intrínseco del electrón es un valor semientero en unidades de ħ, lo que significa que es un fermión. Su antipartícula es denominada positrón: es idéntica excepto por el hecho de que tiene cargas —entre ellas, la eléctrica— de signo opuesto. Cuando un electrón colisiona con un (es)
- The electron (e− or β−) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The are ea (en)
- Das Elektron (IPA: [ˈeːlɛktrɔn, eˈlɛk-, elɛkˈtroːn], , , ; von altgriechisch ἤλεκτρον élektron „Bernstein“, an dem Elektrizität schon in der Antike untersucht wurde; 1874 von Stoney und Helmholtz geprägt) ist ein negativ geladenes Elementarteilchen. Sein Symbol ist e−. Die alternative Bezeichnung Negatron (aus negative Ladung und Elektron) wird kaum noch verwendet und ist allenfalls in der Beta-Spektroskopie gebräuchlich. Beim Beta-Minus-Zerfall eines Atomkerns wird ein Elektron neu erzeugt und ausgesandt. (de)
- Elektroia (grezieratik: ἤλεκτρον ḗlektron «anbar») partikula subatomikoa da. e- edo β- ikurrarekin adierazten da eta karga elektriko elemental negatibo bakarra du. Elektroiak leptoien partikula-familiako lehen belaunaldiko partikulak dira. Gainera, oinarrizko partikulatzat hartzen dira, ez baitute osagai edo egitura ezagunik. Elektroiaren masa protoiarena baino 1863 aldiz txikiagoa da, gutxi gorabehera. Propietate kuantikoen artean, momentu angeluar intrintseko (spin) erdi osoa dauka, Planck-en konstante laburbilduaren unitatetan adierazia. Fermioiak dira-eta, Pauliren elkarrezintasunaren printzipioagatik, bi elektroi ezin dira egoera kuantiko berean egon. Oinarrizko partikula guztiek bezala, elektroiek uhin-partikula izaera dute, hau da, beste partikula batzuekin talka egin dezakete eta, (eu)
- L'électron, un des composants de l'atome avec les neutrons et les protons, est une particule élémentaire qui possède une charge élémentaire de signe négatif. Il est fondamental en chimie, car il participe à presque tous les types de réactions chimiques et constitue un élément primordial des liaisons présentes dans les molécules. En physique, l'électron intervient dans une multitude de rayonnements et d'effets. Ses propriétés, qui se manifestent à l'échelle microscopique, expliquent la conductivité électrique, la conductivité thermique, l'effet Tcherenkov, l'incandescence, l'induction électromagnétique, la luminescence, le magnétisme, le rayonnement électromagnétique, la réflexion optique, l'effet photovoltaïque et la supraconductivité, phénomènes macroscopiques largement exploités dans les (fr)
- Elektron adalah partikel subatom yang bermuatan negatif dan umumnya ditulis sebagai e-. Elektron tidak memiliki komponen dasar ataupun substruktur apapun yang diketahui, sehingga ia dipercayai sebagai partikel elementer. Elektron memiliki massa sekitar 1/1836 massa proton. Momentum sudut (spin) instrinsik elektron adalah setengah nilai integer dalam satuan ħ, yang berarti bahwa ia termasuk fermion. Antipartikel elektron disebut sebagai positron, yang identik dengan elektron, tetapi bermuatan positif. Ketika sebuah elektron bertumbukan dengan positron, keduanya kemungkinan dapat saling ataupun total, menghasilkan sepasang (atau lebih) foton sinar gama. (in)
- L'elettrone è una particella subatomica con carica elettrica negativa che si ritiene essere una particella elementare. Insieme ai protoni e ai neutroni, è un componente dell'atomo e, sebbene contribuisca alla sua massa totale per meno dello 0,06%, ne caratterizza sensibilmente la natura e ne determina le proprietà chimiche: il legame chimico covalente si forma in seguito alla redistribuzione della densità elettronica tra due o più atomi.. Il moto dell'elettrone genera un campo magnetico, mentre la variazione della sua energia e della sua accelerazione causano l'emissione di fotoni; è inoltre responsabile della conduzione della corrente elettrica e del calore. (it)
- ( 다른 뜻에 대해서는 전자 (동음이의) 문서를 참고하십시오.) 전자(電子, 영어: electron, e−, β−)는 음(-)의 기본 전하를 띠는 아원자 입자이다. 1세대 렙톤이고, 하위 구조나 하부 입자가 알려진 바가 없기 때문에 기본 입자로 여겨진다. 양성자보다 1836배 작은 질량을 가지고 있다. 양자역학적 속성으로 스핀이라 불리는 1/2만큼의 고유각운동량을 가진다. 동일한 를 가지는 입자가 존재할 수 없다는 파울리 배타 원리를 따르는 페르미온이다. 다른 기본입자들과 마찬가지로 파동-입자 이중성을 가진다. 전기, 자기, 화학, 열전도 등의 주요한 물리적 현상에 참여하며, 중력, 전자기력, 약한 상호작용의 영향을 받는다. 전하를 띄기 때문에 전기장을 형성하며, 관찰자와 상대적으로 움직이고 있을 경우 자기장이 관찰된다. 전기장과 자기장은 로런츠 법칙에 의해 상호 유도된다. 전자는 가속할 때 광자의 형태로 에너지를 방출하거나 흡수한다. 전자 플라즈마를 통해 개개의 전자를 포착할 수 있으며, 특수한 망원경은 우주 공간에서 날라오는 전자 플라즈마를 탐지할 수 있다. 전자공학, 브라운관, 방사선 치료, 레이저, 입자 가속기 등 다양한 범위에서 응용된다. (ko)
- Het elektron (Oudgrieks: ἤλεκτρον, betekenis: barnsteen dat door wrijving elektrisch geladen werd) is een negatief geladen elementair deeltje, dat gebonden kan zijn, bijvoorbeeld in een atoom, of zich vrij in de ruimte kan bevinden. De ontdekking van het elektron in 1897 wordt toegeschreven aan Joseph John Thomson. (nl)
- O elétron(pt-BR) ou eletrão(pt-PT?) (do grego ήλεκτρον, élektron, "âmbar") é uma partícula subatômica, de símbolo e− ou β−, com carga elétrica negativa. Pertence à primeira geração da família dos léptons, e considera-se que são partículas elementares porque não possuem componentes conhecidos. A massa do elétron é aproximadamente 1/1836 da massa do próton. As propriedades quânticas do elétron incluem um momento angular intrínseco (spin) fracionário, o que significa que é um férmion. Portanto, dois elétrons não podem ocupar o mesmo estado quântico, de acordo com o princípio da exclusão de Pauli. Como toda matéria, possui propriedades de ondas e de corpúsculos: pode colidir com outras partículas, mas também pode ser difratado, assim como a luz. As são mais fáceis de se observar experimentalm (pt)
- Электро́н (от др.-греч. ἤλεκτρον «янтарь») — субатомная частица (обозначается символом e− или β−), чей электрический заряд отрицателен и равен по модулю одному элементарному электрическому заряду. Электроны принадлежат к первому поколению лептонных частиц и обычно считаются фундаментальными частицами, поскольку у них нет известных компонентов или субструктур. Электрон имеет массу, которая составляет приблизительно массы протона. Квантово-механические свойства электрона включают собственный угловой момент (спин) полуцелого значения, выраженного в единицах приведённой постоянной Планка, ħ, что делает их фермионами. В связи с этим никакие два электрона не могут занимать одно и то же квантовое состояние в соответствии с принципом запрета Паули. Как и все элементарные частицы, электроны облада (ru)
- En elektron, historiskt även känd som megatron eller negatron, är en elementarpartikel med en negativ laddning (elementarladdning). En atomkärna omgiven av elektroner bildar en atom. Elektroner är lätta partiklar; en proton är cirka 1 836 gånger tyngre än elektronen. Elektronen betecknas ofta med symbolen e−. Elektronens antipartikel heter positron och har samma egenskaper som elektronen men motsatt laddning. (sv)
- Електро́н (грец. Ηλεκτρόνιο, англ. electron, нім. Elektron) — стабільна, негативно заряджена елементарна частинка, що входить до складу всіх атомів. Має електричний заряд (−e = −1,6021892(46)×10−19 Кл) і масу (9,109554(906)×10−31 кг). Зазвичай електрон позначається в формулах символом e-. Бета-частинки, які є високоенергетичними електронами, що утворюються при бета-розпаді атомних ядер, позначаються символом β-. Античастинкою для електрона є позитрон. Через напівцілий спін електрон є ферміоном, і підкоряється статистиціФермі — Дірака. (uk)
- 电子(英語:Electron)是一种带有负电的次原子粒子,通常标记为 。電子是第一代轻子,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子,根據泡利不相容原理,任何兩個電子都不能處於同樣的量子態。电子的反粒子是正电子,其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正电子會因碰撞而互相湮滅,並在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,則該原子会带电;称該帶電原子为离子。带正电的离子叫阳离子,其電子數小於質子數;带负电的离子叫阴离子,其電子數大於質子數。若物体的电子數不等於質子數,导致正负电量不平衡时,則称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的,例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 (zh)
|