An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

The Absolute Infinite (symbol: Ω) is an extension of the idea of infinity proposed by mathematician Georg Cantor. It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite. Cantor linked the Absolute Infinite with God, and believed that it had various mathematical properties, including the reflection principle: every property of the Absolute Infinite is also held by some smaller object.

Property Value
dbo:abstract
  • The Absolute Infinite (symbol: Ω) is an extension of the idea of infinity proposed by mathematician Georg Cantor. It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite. Cantor linked the Absolute Infinite with God, and believed that it had various mathematical properties, including the reflection principle: every property of the Absolute Infinite is also held by some smaller object. (en)
  • 절대적 무한(Absolute Infinite, 기호: Ω)은 초한수 중에서 가장 크고, 그보다 큰 수는 존재하지 않는 무한수를 가리킨다. 절대적 무한을 가리켜 "오메가"라고도 한다. (ko)
  • Het Absoluut Oneindige was het concept van de wiskundige Georg Cantor van een oneindigheid die de oneindige getallen overstijgt. Cantor stelde het Absoluut Oneindige gelijk met God. Hij kende het Absoluut Oneindige diverse mathematische eigenschappen toe, zoals, dat elke eigenschap van het Absoluut Oneindige ook teruggevonden wordt in een of ander kleiner voorwerp. (nl)
  • O Infinito absoluto é o conceito de Georg Cantor de um infinito que transcendesse os números transfinitos. Cantor equacionou o infinito absoluto como Deus. Ele acreditava que o Infinito tinha várias propriedades matemáticas, incluindo que cada propriedade do infinito absoluto está também presente em alguns objetos menores. (pt)
  • 绝对无限是数学家康托尔的超越超限数的无限概念。康托尔把绝对无限等同于神。他坚持绝对无限有各种数学性质,包括绝对无限的所有性质也被某些更小的对象所持有。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3231 (xsd:integer)
dbo:wikiPageLength
  • 9650 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124384510 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • December 2021 (en)
dbp:reason
  • The 'defining' property, i.e. that of being 'bigger than any conceivable or inconceivable quantity', cannot be held by any smaller object. (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • The Absolute Infinite (symbol: Ω) is an extension of the idea of infinity proposed by mathematician Georg Cantor. It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite. Cantor linked the Absolute Infinite with God, and believed that it had various mathematical properties, including the reflection principle: every property of the Absolute Infinite is also held by some smaller object. (en)
  • 절대적 무한(Absolute Infinite, 기호: Ω)은 초한수 중에서 가장 크고, 그보다 큰 수는 존재하지 않는 무한수를 가리킨다. 절대적 무한을 가리켜 "오메가"라고도 한다. (ko)
  • Het Absoluut Oneindige was het concept van de wiskundige Georg Cantor van een oneindigheid die de oneindige getallen overstijgt. Cantor stelde het Absoluut Oneindige gelijk met God. Hij kende het Absoluut Oneindige diverse mathematische eigenschappen toe, zoals, dat elke eigenschap van het Absoluut Oneindige ook teruggevonden wordt in een of ander kleiner voorwerp. (nl)
  • O Infinito absoluto é o conceito de Georg Cantor de um infinito que transcendesse os números transfinitos. Cantor equacionou o infinito absoluto como Deus. Ele acreditava que o Infinito tinha várias propriedades matemáticas, incluindo que cada propriedade do infinito absoluto está também presente em alguns objetos menores. (pt)
  • 绝对无限是数学家康托尔的超越超限数的无限概念。康托尔把绝对无限等同于神。他坚持绝对无限有各种数学性质,包括绝对无限的所有性质也被某些更小的对象所持有。 (zh)
rdfs:label
  • Absolute Infinite (en)
  • 절대적 무한 (ko)
  • 絶対無限 (ja)
  • Absoluut oneindige (nl)
  • Infinito absoluto (pt)
  • 绝对无限 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License