About: De Bruijn–Erdős theorem (graph theory)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:VisualCommunication106873252, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FDe_Bruijn%E2%80%93Erd%C5%91s_theorem_%28graph_theory%29

In graph theory, the De Bruijn–Erdős theorem relates graph coloring of an infinite graph to the same problem on its finite subgraphs. It states that, when all finite subgraphs can be colored with colors, the same is true for the whole graph. The theorem was proved by Nicolaas Govert de Bruijn and Paul Erdős, after whom it is named.

AttributesValues
rdf:type
rdfs:label
  • Teorema de De Bruijn–Erdős (teoria de grafs) (ca)
  • De Bruijn–Erdős theorem (graph theory) (en)
  • Théorème de De Bruijn-Erdős (théorie des graphes) (fr)
  • Теорема де Брёйна — Эрдёша (теория графов) (ru)
  • Теорема де Брейна — Ердеша (теорія графів) (uk)
rdfs:comment
  • En teoria de grafs, el teorema de De Bruijn-Erdős, demostrat per Nicolaas Govert de Bruijn i Paul Erdős el 1951, estableix que, per a cada G i enter finit k, es pot acolorir G amb k colors (de manera que cap parell de vèrtexs adjacents tingui el mateix color) si i només si tots els seus subgrafs finits es poden acolorir amb k colors. És a dir, cada (és a dir, cada graf que requereix k colors però per al qual tots els subgrafs requereixen un nombre menor de colors) ha de tenir un nombre finit de vèrtexs. (ca)
  • Le théorème de De Bruijn-Erdős en théorie des graphes, démontré par Nicolaas Govert de Bruijn et Paul Erdős, établit que (pour tout entier naturel k) pour qu'un graphe non orienté infini possède une coloration par k couleurs, il suffit qu'il en soit ainsi pour tous ses sous-graphes finis. Autrement dit : tout graphe (en) (i.e. dont toute coloration a au moins k couleurs mais dont tous les sous-graphes propres sont k – 1-colorables) a un nombre fini de sommets. (fr)
  • Теорема де Брёйна — Эрдёша — классическая теорема теории графов доказанная Палом Эрдёшем и Николаасом де Брёйном. (ru)
  • Теорема де Брейна — Ердеша — класична теорема теорії графів доведена Палом Ердешем і Ніколасом де Брейном. (uk)
  • In graph theory, the De Bruijn–Erdős theorem relates graph coloring of an infinite graph to the same problem on its finite subgraphs. It states that, when all finite subgraphs can be colored with colors, the same is true for the whole graph. The theorem was proved by Nicolaas Govert de Bruijn and Paul Erdős, after whom it is named. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Hadwiger-Nelson.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 40 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software