This HTML5 document contains 57 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n18https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n4http://www.numdam.org/article/
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n13http://acta.fyx.hu/acta/

Statements

Subject Item
dbr:Uniformly_bounded_representation
rdfs:label
Uniformly bounded representation
rdfs:comment
In mathematics, a uniformly bounded representation of a locally compact group on a Hilbert space is a homomorphism into the bounded invertible operators which is continuous for the strong operator topology, and such that is finite. In 1947 Béla Szőkefalvi-Nagy established that any uniformly bounded representation of the integers or the real numbers is unitarizable, i.e. conjugate by an invertible operator to a unitary representation. For the integers this gives a criterion for an invertible operator to be similar to a unitary operator: the operator norms of all the positive and negative powers must be uniformly bounded. The result on unitarizability of uniformly bounded representations was extended in 1950 by Dixmier, Day and Nakamura-Takeda to all locally compact amenable groups, foll
dcterms:subject
dbc:Functional_analysis dbc:Operator_theory dbc:Representation_theory
dbo:wikiPageID
36186626
dbo:wikiPageRevisionID
1053940484
dbo:wikiPageWikiLink
dbr:Journal_of_Functional_Analysis dbr:Tits_alternative dbc:Operator_theory dbr:Advances_in_Mathematics dbr:Direct_product_of_groups dbr:Strong_operator_topology dbr:Cayley_graph dbr:Hilbert_space dbc:Functional_analysis dbr:Gilles_Pisier dbr:Linear_group dbr:Induced_representation dbr:Nicolas_Monod dbr:Unitary_representation dbr:Burnside_group dbr:Tôhoku_Mathematical_Journal dbr:Operator_norm dbr:Complementary_series_representation dbr:Béla_Szőkefalvi-Nagy dbr:Locally_compact_group dbr:Von_Neumann_conjecture dbc:Representation_theory dbr:Surface_group dbr:International_Mathematics_Research_Notices dbr:Jacques_Dixmier dbr:Amenable_group dbr:Möbius_transformation dbr:Homomorphism
dbo:wikiPageExternalLink
n4:AIF_1988__38_1_87_0.pdf%7Cdoi-access=free n13:showCustomerArticle.action%3Fid=4759&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=7c2f7e4e2a4b554f&style= n13:showCustomerArticle.action%3Fid=5883&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=744baf4652e1c219&style=
owl:sameAs
wikidata:Q7885145 freebase:m.0k0syx6 n18:4wD1q
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Harvtxt dbt:Reflist
dbo:abstract
In mathematics, a uniformly bounded representation of a locally compact group on a Hilbert space is a homomorphism into the bounded invertible operators which is continuous for the strong operator topology, and such that is finite. In 1947 Béla Szőkefalvi-Nagy established that any uniformly bounded representation of the integers or the real numbers is unitarizable, i.e. conjugate by an invertible operator to a unitary representation. For the integers this gives a criterion for an invertible operator to be similar to a unitary operator: the operator norms of all the positive and negative powers must be uniformly bounded. The result on unitarizability of uniformly bounded representations was extended in 1950 by Dixmier, Day and Nakamura-Takeda to all locally compact amenable groups, following essentially the method of proof of Sz-Nagy. The result is known to fail for non-amenable groups such as SL(2,R) and the free group on two generators. conjectured that a locally compact group is amenable if and only if every uniformly bounded representation is unitarizable.
gold:hypernym
dbr:Homomorphism
prov:wasDerivedFrom
wikipedia-en:Uniformly_bounded_representation?oldid=1053940484&ns=0
dbo:wikiPageLength
21196
foaf:isPrimaryTopicOf
wikipedia-en:Uniformly_bounded_representation
Subject Item
dbr:Glossary_of_representation_theory
dbo:wikiPageWikiLink
dbr:Uniformly_bounded_representation
Subject Item
dbr:Dixmier_Problem
dbo:wikiPageWikiLink
dbr:Uniformly_bounded_representation
dbo:wikiPageRedirects
dbr:Uniformly_bounded_representation
Subject Item
dbr:Dixmier_conjecture
dbo:wikiPageWikiLink
dbr:Uniformly_bounded_representation
Subject Item
dbr:Dixmier_problem
dbo:wikiPageWikiLink
dbr:Uniformly_bounded_representation
dbo:wikiPageRedirects
dbr:Uniformly_bounded_representation
Subject Item
dbr:Amenable_group
dbo:wikiPageWikiLink
dbr:Uniformly_bounded_representation
Subject Item
wikipedia-en:Uniformly_bounded_representation
foaf:primaryTopic
dbr:Uniformly_bounded_representation