This HTML5 document contains 92 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Quadratic_equation
dbo:wikiPageWikiLink
dbr:Solving_quadratic_equations_with_continued_fractions
Subject Item
dbr:Generalized_continued_fraction
dbo:wikiPageWikiLink
dbr:Solving_quadratic_equations_with_continued_fractions
Subject Item
dbr:Square_root
dbo:wikiPageWikiLink
dbr:Solving_quadratic_equations_with_continued_fractions
Subject Item
dbr:Methods_of_computing_square_roots
rdfs:seeAlso
dbr:Solving_quadratic_equations_with_continued_fractions
Subject Item
dbr:Solving_quadratic_equations_with_continued_fractions
rdf:type
yago:WikicatEquations yago:RealNumber113729902 yago:Event100029378 yago:Rule105846932 yago:ComplexNumber113729428 yago:Algorithm105847438 yago:Measure100033615 yago:Number113582013 yago:DefiniteQuantity113576101 yago:WikicatRoot-findingAlgorithms yago:YagoPermanentlyLocatedEntity yago:Communication100033020 yago:Procedure101023820 yago:Statement106722453 yago:ContinuedFraction113736550 yago:RationalNumber113730469 yago:Message106598915 yago:Abstraction100002137 yago:PsychologicalFeature100023100 yago:MathematicalStatement106732169 yago:Equation106669864 yago:Act100030358 yago:WikicatContinuedFractions yago:Activity100407535 yago:Fraction113732078
rdfs:label
Solving quadratic equations with continued fractions
rdfs:comment
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is where a ≠ 0. The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated as a decimal fraction only by applying an additional root extraction algorithm.
dct:subject
dbc:Elementary_algebra dbc:Root-finding_algorithms dbc:Continued_fractions dbc:Equations dbc:Mathematical_analysis
dbo:wikiPageID
8393831
dbo:wikiPageRevisionID
1102178147
dbo:wikiPageWikiLink
dbr:Algebraic_number_field dbr:Absolute_value dbr:Quadratic_equation dbr:Root_of_a_function dbc:Root-finding_algorithms dbr:Complex_analysis dbr:Coefficient dbc:Elementary_algebra dbr:Leonhard_Euler dbr:Discriminant dbc:Continued_fractions dbr:Fundamental_theorem_of_algebra dbr:Quadratic_irrational dbr:Degree_of_a_polynomial dbr:Real_number dbr:Pell_number dbr:D._Van_Nostrand_Company,_Inc. dbr:Monic_polynomial dbr:Pell's_equation dbr:Fundamental_recurrence_formulas dbr:Lucas_sequence dbc:Equations dbr:Algebraic_fraction dbr:Completing_the_square dbr:Abstract_algebra dbr:Approximant_(continued_fraction) dbr:Convergent_(continued_fraction) dbr:Set_(mathematics) dbr:Square_number dbr:Continued_fraction dbr:Imaginary_number dbr:Convergence_problem dbr:Unit_(ring_theory) dbr:Integral_domain dbr:Geometric_progression dbr:Mathematics dbr:Generalized_continued_fraction dbc:Mathematical_analysis dbr:Methods_of_computing_square_roots dbr:Decimal dbr:Ring_(mathematics)
owl:sameAs
freebase:m.0271xl1 dbpedia-hu:Másodfokú_egyenletek_megoldása_lánctörtekkel n15:G8p3 wikidata:Q1212495 yago-res:Solving_quadratic_equations_with_continued_fractions
dbp:wikiPageUsesTemplate
dbt:Radic dbt:Reflist dbt:Isbn
dbo:abstract
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is where a ≠ 0. The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated as a decimal fraction only by applying an additional root extraction algorithm. If the roots are real, there is an alternative technique that obtains a rational approximation to one of the roots by manipulating the equation directly. The method works in many cases, and long ago it stimulated further development of the analytical theory of continued fractions.
prov:wasDerivedFrom
wikipedia-en:Solving_quadratic_equations_with_continued_fractions?oldid=1102178147&ns=0
dbo:wikiPageLength
10653
foaf:isPrimaryTopicOf
wikipedia-en:Solving_quadratic_equations_with_continued_fractions
Subject Item
wikipedia-en:Solving_quadratic_equations_with_continued_fractions
foaf:primaryTopic
dbr:Solving_quadratic_equations_with_continued_fractions