An Entity of Type: Fraction113732078, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the analytic theory of continued fractions, the convergence problem is the determination of conditions on the partial numerators ai and partial denominators bi that are sufficient to guarantee the convergence of the continued fraction This convergence problem for continued fractions is inherently more difficult than the corresponding convergence problem for infinite series.

Property Value
dbo:abstract
  • In the analytic theory of continued fractions, the convergence problem is the determination of conditions on the partial numerators ai and partial denominators bi that are sufficient to guarantee the convergence of the continued fraction This convergence problem for continued fractions is inherently more difficult than the corresponding convergence problem for infinite series. (en)
  • En mathématiques, et plus précisément dans la théorie analytique des fractions continues généralisées à coefficients complexes, le problème de convergence est la détermination de conditions sur les numérateurs partiels ai et les dénominateurs partiels bi qui soient suffisantes pour garantir la convergence de la fraction continue, notée désormais dans cet article c'est-à-dire la convergence de la suite de ses réduites (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 8658125 (xsd:integer)
dbo:wikiPageLength
  • 10920 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117470510 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • March 2015 (en)
dbp:for
  • Euler's continued fraction formula is older (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In the analytic theory of continued fractions, the convergence problem is the determination of conditions on the partial numerators ai and partial denominators bi that are sufficient to guarantee the convergence of the continued fraction This convergence problem for continued fractions is inherently more difficult than the corresponding convergence problem for infinite series. (en)
  • En mathématiques, et plus précisément dans la théorie analytique des fractions continues généralisées à coefficients complexes, le problème de convergence est la détermination de conditions sur les numérateurs partiels ai et les dénominateurs partiels bi qui soient suffisantes pour garantir la convergence de la fraction continue, notée désormais dans cet article c'est-à-dire la convergence de la suite de ses réduites (fr)
rdfs:label
  • Convergence problem (en)
  • Problème de convergence (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License