This HTML5 document contains 83 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n22http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ruhttp://ru.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n14http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_graphs_by_edges_and_vertices
dbo:wikiPageWikiLink
dbr:Robertson_graph
Subject Item
dbr:Cage_(graph_theory)
dbo:wikiPageWikiLink
dbr:Robertson_graph
Subject Item
dbr:Gallery_of_named_graphs
dbo:wikiPageWikiLink
dbr:Robertson_graph
Subject Item
dbr:Neil_Robertson_(mathematician)
dbo:wikiPageWikiLink
dbr:Robertson_graph
Subject Item
dbr:Robertson
dbo:wikiPageWikiLink
dbr:Robertson_graph
dbo:wikiPageDisambiguates
dbr:Robertson_graph
Subject Item
dbr:Robertson_graph
rdf:type
yago:WikicatIndividualGraphs yago:Graph107000195 yago:Abstraction100002137 yago:VisualCommunication106873252 yago:WikicatRegularGraphs dbo:Software yago:Communication100033020
rdfs:label
Robertson graph Граф Робертсона Graphe de Robertson
rdfs:comment
Граф Робертсона или (4,5)-клетка — это 4-регулярный неориентированный граф с 19 вершинами и 38 рёбрами, названный именем . Граф Робертсона является уникальной (4,5)-клеткой и его открыл Робертсон в 1964 году. Как клетка, граф является наименьшим 4-регулярным графом с обхватом 5. Граф имеет хроматическое число 3, хроматический индекс 5, диаметр 3, радиус 3, он вершинно 4-связен и рёберно 4-связен. Его книжная толщина равна 3 и число очередей равно 2. Граф Робертсона гамильтонов и он имеет 5376 различных гамильтоновых циклов. In the mathematical field of graph theory, the Robertson graph or (4,5)-cage, is a 4-regular undirected graph with 19 vertices and 38 edges named after Neil Robertson. The Robertson graph is the unique (4,5)-cage graph and was discovered by Robertson in 1964. As a cage graph, it is the smallest 4-regular graph with girth 5. It has chromatic number 3, chromatic index 5, diameter 3, radius 3 and is both 4-vertex-connected and 4-edge-connected. It has book thickness 3 and queue number 2. The Robertson graph is also a Hamiltonian graph which possesses 5,376 distinct directed Hamiltonian cycles. Le graphe de Robertson est, en théorie des graphes, un graphe 4-régulier possédant 19 sommets et 38 arêtes.
dbp:name
Robertson graph
foaf:depiction
n14:Robertson_graph_hamiltonian.svg n14:Robertson_graph_3COL.svg n14:Robertson_graph_5color_edge.svg n14:Robertson_graph.svg
dcterms:subject
dbc:Regular_graphs dbc:Individual_graphs
dbo:wikiPageID
24107869
dbo:wikiPageRevisionID
1083753786
dbo:wikiPageWikiLink
dbr:Chromatic_number dbr:Dihedral_group dbc:Regular_graphs dbr:Hamiltonian_graph dbr:Vertex-transitive_graph dbr:Graph_theory dbr:Queue_number dbr:Book_thickness dbr:K-vertex-connected_graph dbr:Cop_number dbr:K-edge-connected_graph dbr:Characteristic_polynomial dbr:Mathematics dbr:Cage_graph dbr:Neil_Robertson_(mathematician) dbr:Regular_graph dbr:Dodecagon dbr:Cage_(graph_theory) n22:Robertson_graph_hamiltonian.svg dbr:Chromatic_index dbc:Individual_graphs dbr:Undirected_graph
owl:sameAs
wikidata:Q3115531 n16:2thab freebase:m.07k4vsj yago-res:Robertson_graph dbpedia-fr:Graphe_de_Robertson dbpedia-ru:Граф_Робертсона
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Infobox_graph
dbo:thumbnail
n14:Robertson_graph_hamiltonian.svg?width=300
dbp:namesake
dbr:Neil_Robertson_(mathematician)
dbp:automorphisms
24
dbp:chromaticIndex
5
dbp:chromaticNumber
3
dbp:diameter
3
dbp:edges
38
dbp:girth
5
dbp:imageCaption
The Robertson graph is Hamiltonian.
dbp:properties
dbr:Hamiltonian_graph dbr:Cage_(graph_theory)
dbp:radius
3
dbp:vertices
19
dbo:abstract
Граф Робертсона или (4,5)-клетка — это 4-регулярный неориентированный граф с 19 вершинами и 38 рёбрами, названный именем . Граф Робертсона является уникальной (4,5)-клеткой и его открыл Робертсон в 1964 году. Как клетка, граф является наименьшим 4-регулярным графом с обхватом 5. Граф имеет хроматическое число 3, хроматический индекс 5, диаметр 3, радиус 3, он вершинно 4-связен и рёберно 4-связен. Его книжная толщина равна 3 и число очередей равно 2. Граф Робертсона гамильтонов и он имеет 5376 различных гамильтоновых циклов. Le graphe de Robertson est, en théorie des graphes, un graphe 4-régulier possédant 19 sommets et 38 arêtes. In the mathematical field of graph theory, the Robertson graph or (4,5)-cage, is a 4-regular undirected graph with 19 vertices and 38 edges named after Neil Robertson. The Robertson graph is the unique (4,5)-cage graph and was discovered by Robertson in 1964. As a cage graph, it is the smallest 4-regular graph with girth 5. It has chromatic number 3, chromatic index 5, diameter 3, radius 3 and is both 4-vertex-connected and 4-edge-connected. It has book thickness 3 and queue number 2. The Robertson graph is also a Hamiltonian graph which possesses 5,376 distinct directed Hamiltonian cycles. The Robertson graph is one of the smallest graphs with cop number 4.
dbp:bookThickness
3
dbp:queueNumber
2
gold:hypernym
dbr:Graph
prov:wasDerivedFrom
wikipedia-en:Robertson_graph?oldid=1083753786&ns=0
dbo:wikiPageLength
2909
foaf:isPrimaryTopicOf
wikipedia-en:Robertson_graph
Subject Item
dbr:(4,5)-cage
dbo:wikiPageWikiLink
dbr:Robertson_graph
dbo:wikiPageRedirects
dbr:Robertson_graph
Subject Item
wikipedia-en:Robertson_graph
foaf:primaryTopic
dbr:Robertson_graph