This HTML5 document contains 83 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Quantum_electrodynamics
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Quantum_vacuum_state
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Electromagnetic_field
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Relativistic_wave_equations
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Index_of_physics_articles_(Q)
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:QED_vacuum
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Quantization_of_the_electromagnetic_field
rdfs:label
Quantizzazione del campo elettromagnetico 電磁場の量子化 Quantization of the electromagnetic field
rdfs:comment
The quantization of the electromagnetic field, means that an electromagnetic field consists of discrete energy parcels, photons. Photons are massless particles of definite energy, definite momentum, and definite spin. A quantum mechanical photon state belonging to mode is introduced below, and it is shown that it has the following properties: In fisica, la quantizzazione del campo elettromagnetico è la descrizione del campo elettromagnetico, responsabile delle onde elettromagnetiche, nel formalismo della meccanica quantistica. La trattazione è, sotto alcuni aspetti, simile a quella dell'oscillatore armonico, anche se più complicata data la maggiore complessità delle equazioni che descrivono il campo. 量子電磁力学では電磁場の量子化(でんじばのりょうしか)により、粒子の運動量は演算子に置き換わる。量子化によって電磁場は光子の集まりであることがわかる。つまり、光子の状態を表す電磁ポテンシャルの時間微分が電場、空間微分が磁場である。 電磁場の量子化には2通り考えられる。1つ目の方法は、場の量子論の知識によって古典的な電磁場を量子化して、量子化された電磁場を得る方法である。 2つ目の方法は、古典電磁気学と解析力学によって「古典的な電磁場は、無限個の古典的な調和振動子の集まりと等価である」ことを示し、その調和振動子を量子力学の知識によって量子化する。すると無限個の量子的な調和振動子を得られるが、それを量子化された電磁場と考える。以下ではこちらの方法について述べる。
dct:subject
dbc:Gauge_theories dbc:Mathematical_quantization
dbo:wikiPageID
26828712
dbo:wikiPageRevisionID
1118750300
dbo:wikiPageWikiLink
dbr:Frequency dbr:Photon dbr:Jones_calculus dbc:Mathematical_quantization dbr:SI dbr:Annihilation_operator dbr:Schrödinger_picture dbr:Special_relativity dbr:Vector_field dbr:Boson dbr:Catalog_of_magnetic_nuclei dbr:Fermions dbr:Harmonic_oscillator_(quantum) dbr:Complex_conjugate dbr:Fourier_expansion dbr:Speed_of_light dbr:Electric_constant dbr:Planck's_constant dbr:Coulomb_gauge dbr:Curl_(mathematics) dbr:Quantum_mechanics dbr:Wave_vector dbr:Magnetic_field dbr:Dyadic_product dbr:Spin_(physics) dbr:Electric_field dbr:Fourier_component dbr:Paul_A._M._Dirac dbr:Creation_operator dbr:Energy dbr:Operator_(physics) dbr:QED_vacuum dbr:Momentum dbr:Eigenvector dbr:Second_quantization dbr:Angular_momentum_operator dbr:Hermitian_adjoint dbr:Anticommutativity dbr:Electromagnetic_wave dbr:Commutation_relation dbc:Gauge_theories dbr:Vector_potential dbr:Photoelectric_effect dbr:Transverse_field dbr:Albert_Einstein dbr:Isotope
owl:sameAs
wikidata:Q7268948 freebase:m.0bmk6p_ n14:4tzma dbpedia-it:Quantizzazione_del_campo_elettromagnetico dbpedia-ja:電磁場の量子化
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Citizendium
dbo:abstract
量子電磁力学では電磁場の量子化(でんじばのりょうしか)により、粒子の運動量は演算子に置き換わる。量子化によって電磁場は光子の集まりであることがわかる。つまり、光子の状態を表す電磁ポテンシャルの時間微分が電場、空間微分が磁場である。 電磁場の量子化には2通り考えられる。1つ目の方法は、場の量子論の知識によって古典的な電磁場を量子化して、量子化された電磁場を得る方法である。 2つ目の方法は、古典電磁気学と解析力学によって「古典的な電磁場は、無限個の古典的な調和振動子の集まりと等価である」ことを示し、その調和振動子を量子力学の知識によって量子化する。すると無限個の量子的な調和振動子を得られるが、それを量子化された電磁場と考える。以下ではこちらの方法について述べる。 In fisica, la quantizzazione del campo elettromagnetico è la descrizione del campo elettromagnetico, responsabile delle onde elettromagnetiche, nel formalismo della meccanica quantistica. La trattazione è, sotto alcuni aspetti, simile a quella dell'oscillatore armonico, anche se più complicata data la maggiore complessità delle equazioni che descrivono il campo. The quantization of the electromagnetic field, means that an electromagnetic field consists of discrete energy parcels, photons. Photons are massless particles of definite energy, definite momentum, and definite spin. To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is Planck's constant and ν is the wave frequency. In 1927 Paul A. M. Dirac was able to weave the photon concept into the fabric of the new quantum mechanics and to describe the interaction of photons with matter. He applied a technique which is now generally called second quantization, although this term is somewhat of a misnomer for electromagnetic fields, because they are solutions of the classical Maxwell equations. In Dirac's theory the fields are quantized for the first time and it is also the first time that Planck's constant enters the expressions. In his original work, Dirac took the phases of the different electromagnetic modes (Fourier components of the field) and the mode energies as dynamic variables to quantize (i.e., he reinterpreted them as operators and postulated commutation relations between them). At present it is more common to quantize the Fourier components of the vector potential. This is what is done below. A quantum mechanical photon state belonging to mode is introduced below, and it is shown that it has the following properties: These equations say respectively: a photon has zero rest mass; the photon energy is hν = hc|k| (k is the wave vector, c is speed of light); its electromagnetic momentum is ℏk [ℏ=h/(2π)]; the polarization μ = ±1 is the eigenvalue of the z-component of the photon spin.
prov:wasDerivedFrom
wikipedia-en:Quantization_of_the_electromagnetic_field?oldid=1118750300&ns=0
dbo:wikiPageLength
25681
foaf:isPrimaryTopicOf
wikipedia-en:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Quantum_optics
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Quantum_well_infrared_photodetector
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Heat_transfer_physics
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Non-linear_inverse_Compton_scattering
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Ghost_(physics)
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Vacuum_Rabi_oscillation
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
dbr:Squeezed_states_of_light
dbo:wikiPageWikiLink
dbr:Quantization_of_the_electromagnetic_field
Subject Item
wikipedia-en:Quantization_of_the_electromagnetic_field
foaf:primaryTopic
dbr:Quantization_of_the_electromagnetic_field