This HTML5 document contains 86 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dcthttp://purl.org/dc/terms/
n7http://hirzels.com/martin/papers/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10http://www.apronus.com/math/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
rdf:type
yago:Abstraction100002137 yago:MathematicalProof106647864 yago:Argument106648724 yago:WikicatMathematicalProofs yago:Indication106797169 yago:Communication100033020 yago:Proof106647614 yago:Evidence106643408
rdfs:label
Beweise der gödelschen Unvollständigkeitssätze Proof sketch for Gödel's first incompleteness theorem
rdfs:comment
Dieser Artikel skizziert Beweise der Gödelschen Unvollständigkeitssätze. Dabei handelt es sich um zwei mathematische Sätze, die zu den wichtigsten Ergebnissen der Logik gezählt werden und die von Kurt Gödel 1930 bewiesen wurden. Der erste Unvollständigkeitssatz besagt, dass kein konsistentes Axiomensystem, dessen Theoreme von einem Algorithmus aufgezählt werden können, alle wahren Aussagen über natürliche Zahlen mit Addition und Multiplikation beweisen kann. Der zweite Unvollständigkeitssatz besagt, dass ein solches System die eigene Widerspruchsfreiheit nicht beweisen kann. This article gives a sketch of a proof of Gödel's first incompleteness theorem. This theorem applies to any formal theory that satisfies certain technical hypotheses, which are discussed as needed during the sketch. We will assume for the remainder of the article that a fixed theory satisfying these hypotheses has been selected. Throughout this article the word "number" refers to a natural number. The key property these numbers possess is that any natural number can be obtained by starting with the number 0 and adding 1 a finite number of times.
dct:subject
dbc:Mathematical_logic dbc:Mathematical_proofs
dbo:wikiPageID
9142932
dbo:wikiPageRevisionID
1106008895
dbo:wikiPageWikiLink
dbc:Mathematical_proofs dbr:Peano_arithmetic dbr:Peano_axioms dbr:Consistency dbr:Douglas_Hofstadter dbr:Omega-consistent dbr:Diagonal_lemma dbr:Successor_(graph_theory) dbr:Number_theory dbr:Gödel_number dbr:Gödel,_Escher,_Bach dbr:Gödel's_incompleteness_theorems dbr:Natural_number dbr:Completeness_theorem dbr:Logical_connective dbr:Domain_of_discourse dbr:Well-formed_formula dbr:Robinson_arithmetic dbr:Completeness_(logic) dbr:Algorithm dbr:Free_variable dbr:Signature_(logic) dbr:Solomon_Feferman dbr:Successor_function dbr:ASCII dbr:Gödel_sentence dbr:Commutativity dbr:Recursively_enumerable dbr:Model_theory dbr:Consistency_proof dbr:Formal_system dbr:Quantifier_(logic) dbr:Theorem dbr:Recursion dbr:First-order_logic dbr:Jean_van_Heijenoort dbr:Berry's_paradox dbc:Mathematical_logic dbr:Consistent dbr:Existential_quantifier dbr:George_Boolos dbr:Iff dbr:Primitive_recursive_function dbr:Peano_Arithmetic
dbo:wikiPageExternalLink
n7:canon00-goedel.pdf n10:goedel.htm
owl:sameAs
dbpedia-de:Beweise_der_gödelschen_Unvollständigkeitssätze wikidata:Q852580 n18:51YHv freebase:m.027z7hl
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:More_citations_needed dbt:Mathematical_logic dbt:Math dbt:=
dbo:abstract
This article gives a sketch of a proof of Gödel's first incompleteness theorem. This theorem applies to any formal theory that satisfies certain technical hypotheses, which are discussed as needed during the sketch. We will assume for the remainder of the article that a fixed theory satisfying these hypotheses has been selected. Throughout this article the word "number" refers to a natural number. The key property these numbers possess is that any natural number can be obtained by starting with the number 0 and adding 1 a finite number of times. Dieser Artikel skizziert Beweise der Gödelschen Unvollständigkeitssätze. Dabei handelt es sich um zwei mathematische Sätze, die zu den wichtigsten Ergebnissen der Logik gezählt werden und die von Kurt Gödel 1930 bewiesen wurden. Der erste Unvollständigkeitssatz besagt, dass kein konsistentes Axiomensystem, dessen Theoreme von einem Algorithmus aufgezählt werden können, alle wahren Aussagen über natürliche Zahlen mit Addition und Multiplikation beweisen kann. Der zweite Unvollständigkeitssatz besagt, dass ein solches System die eigene Widerspruchsfreiheit nicht beweisen kann.
prov:wasDerivedFrom
wikipedia-en:Proof_sketch_for_Gödel's_first_incompleteness_theorem?oldid=1106008895&ns=0
dbo:wikiPageLength
22681
foaf:isPrimaryTopicOf
wikipedia-en:Proof_sketch_for_Gödel's_first_incompleteness_theorem
Subject Item
dbr:Proof_sketch_for_Godel's_first_incompleteness_theorem
dbo:wikiPageWikiLink
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
dbo:wikiPageRedirects
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
Subject Item
dbr:Proof_sketch_for_Goedel's_first_incompleteness_theorem
dbo:wikiPageWikiLink
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
dbo:wikiPageRedirects
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
Subject Item
dbr:Truth
dbo:wikiPageWikiLink
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
Subject Item
dbr:Gödel_numbering
dbo:wikiPageWikiLink
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
Subject Item
dbr:History_of_mathematical_notation
rdfs:seeAlso
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
Subject Item
dbr:Gödel's_incompleteness_theorems
rdfs:seeAlso
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
Subject Item
dbr:Ability
dbo:wikiPageWikiLink
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem
Subject Item
wikipedia-en:Proof_sketch_for_Gödel's_first_incompleteness_theorem
foaf:primaryTopic
dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem