This HTML5 document contains 102 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n7http://dbpedia.org/resource/File:
n6https://github.com/nathanaelbosch/
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n15https://github.com/f-dangel/
n5https://github.com/EmuKit/
n10http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13https://github.com/probabilistic-numerics/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Bayesian_inference
dbo:wikiPageWikiLink
dbr:Probabilistic_numerics
Subject Item
dbr:Bayesian_optimization
dbo:wikiPageWikiLink
dbr:Probabilistic_numerics
Subject Item
dbr:Probabilistic_numerics
rdf:type
owl:Thing
rdfs:label
Probabilistic numerics
rdfs:comment
Probabilistic numerics is a scientific field at the intersection of statistics, machine learning and applied mathematics, where tasks in numerical analysis including finding numerical solutions for integration, linear algebra, optimisation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
rdfs:seeAlso
dbr:Bayesian_optimization
foaf:depiction
n10:Bayesian_quadrature.svg n10:Lorenz_Probabilistic_Numerics.jpg n10:GpParBayesAnimationSmall.gif n10:Matrix-based-probabilistic-linear-solver.svg
dcterms:subject
dbc:Applied_statistics dbc:Machine_learning dbc:Applied_mathematics
dbo:wikiPageID
69088046
dbo:wikiPageRevisionID
1093887158
dbo:wikiPageWikiLink
dbc:Applied_mathematics dbr:Inverse_problem dbr:Gaussian_process n7:Lorenz_Probabilistic_Numerics.jpg dbr:Bayesian_optimization dbr:Systems_of_linear_equations dbr:Henri_Poincaré dbr:Stochastic_differential_equation dbr:Uncertainty_quantification dbr:Utility_function dbr:Information-based_complexity dbr:Applied_mathematics dbr:Average-case_analysis dbr:Multi-armed_bandit dbr:Empirical_risk_minimization dbr:Posterior_distribution dbr:Quasi-Newton_method dbr:Probability dbr:Least_squares n7:GpParBayesAnimationSmall.gif dbr:Best,_worst_and_average_case dbr:Bayesian_inference dbr:Active_learning_(machine_learning) dbr:Bayesian_experimental_design dbr:Numerical_linear_algebra dbr:Normal_distribution dbc:Machine_learning dbr:Determinants dbr:Conjugate_gradient_method dbr:Early_stopping dbr:Approximate_Bayesian_computation dbc:Applied_statistics dbr:Computer_simulation dbr:Brownian_motion dbr:Machine_learning dbr:Mean_squared_error dbr:Numerical_optimisation dbr:Game_theory dbr:Mathematical_optimization dbr:Likelihood_function dbr:Ordinary_differential_equation dbr:Abraham_Wald dbr:Statistics dbr:Mixed_strategy dbr:Deep_learning dbr:Power_series n7:Bayesian_quadrature.svg dbr:Prior_probability dbr:Bayesian_quadrature dbr:Trapezoidal_rule dbr:Learning_rate n7:Matrix-based-probabilistic-linear-solver.svg dbr:Stochastic_optimization dbr:Numerical_analysis dbr:Decision_theory dbr:Numerical_integration dbr:Partial_differential_equations dbr:Kalman_filter dbr:John_von_Neumann dbr:Linear_multistep_method dbr:Linear_map dbr:Gaussian_quadrature dbr:Line_search dbr:Gaussian_measure
dbo:wikiPageExternalLink
n5:emukit n6:ProbNumDiffEq.jl n13:probnum n15:backpack
owl:sameAs
n12:G6Txd wikidata:Q109297617
dbp:wikiPageUsesTemplate
dbt:See_also dbt:Short_description dbt:Reflist dbt:Main
dbo:thumbnail
n10:Bayesian_quadrature.svg?width=300
dbo:abstract
Probabilistic numerics is a scientific field at the intersection of statistics, machine learning and applied mathematics, where tasks in numerical analysis including finding numerical solutions for integration, linear algebra, optimisation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
prov:wasDerivedFrom
wikipedia-en:Probabilistic_numerics?oldid=1093887158&ns=0
dbo:wikiPageLength
37600
foaf:isPrimaryTopicOf
wikipedia-en:Probabilistic_numerics
Subject Item
dbr:Bayesian_quadrature
dbo:wikiPageWikiLink
dbr:Probabilistic_numerics
Subject Item
dbr:Gaussian_process
dbo:wikiPageWikiLink
dbr:Probabilistic_numerics
Subject Item
dbr:Numerical_analysis
dbo:wikiPageWikiLink
dbr:Probabilistic_numerics
Subject Item
dbr:Numerical_integration
dbo:wikiPageWikiLink
dbr:Probabilistic_numerics
Subject Item
dbr:Uncertainty_quantification
dbo:wikiPageWikiLink
dbr:Probabilistic_numerics
Subject Item
dbr:Probabilistic_numerical_method
dbo:wikiPageWikiLink
dbr:Probabilistic_numerics
dbo:wikiPageRedirects
dbr:Probabilistic_numerics
Subject Item
wikipedia-en:Probabilistic_numerics
foaf:primaryTopic
dbr:Probabilistic_numerics