This HTML5 document contains 113 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-eshttp://es.dbpedia.org/resource/
n6http://d.a.nicolas.free.fr/
n24https://global.dbpedia.org/id/
n25https://web.archive.org/web/20110720224730/http:/d.a.nicolas.free.fr/research/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
n10https://web.archive.org/web/20121020031936/http:/www.st-andrews.ac.uk/arche/twiki/~ahwiki/bin/view/Arche/MathPlurals/
n5https://web.archive.org/web/20150211224457/http:/lumiere.ens.fr/~amari/genius/PapersSeminar/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n20https://web.archive.org/web/20120219021719/http:/d.a.nicolas.free.fr/
owlhttp://www.w3.org/2002/07/owl#
n7http://d.a.nicolas.free.fr/research/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n4https://web.archive.org/web/20150211221601/http:/semantics.univ-paris1.fr/pdf/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Elementary_definition
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Mereology
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:David_Lewis_(philosopher)
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Index_of_logic_articles
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Index_of_philosophy_articles_(I–Q)
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Plural_quantification
rdf:type
dbo:Work
rdfs:label
Cuantificación plural Quantificação plural Plural quantification
rdfs:comment
Na matemática e na lógica, a quantificação plural é a teoria na qual uma variável individual x pode representar múltiplos objetos (plural), assim como objetos individuais (singular). Assim, da mesma forma que podemos substituir objetos como Alice, o número 1, ou a maior construção em Londres, por x, nós também podemos representar por x várias pessoas (ex: Alice e Bob), todos os números de 0 até 10, ou todas as construções em Londres com 20 andares ou mais. En lógica matemática, cuantificación plural es la teoría que establece que una variable individual x puede representar tanto valores plurales, como singulares. En ella no solo es posible reemplazar el valor de x por objetos individuales como Alicia, el número 1, el edificio más alto de Buenos Aires etc., sino que también es reemplazar juntos Alicia y Pedro, o todos los números del 0 al 10, o todos los edificios de Buenos Aires con más de 40 metros de altura. In mathematics and logic, plural quantification is the theory that an individual variable x may take on plural, as well as singular, values. As well as substituting individual objects such as Alice, the number 1, the tallest building in London etc. for x, we may substitute both Alice and Bob, or all the numbers between 0 and 10, or all the buildings in London over 20 stories. The point of the theory is to give first-order logic the power of set theory, but without any "existential commitment" to such objects as sets. The classic expositions are Boolos 1984 and Lewis 1991.
dcterms:subject
dbc:Quantifier_(logic)
dbo:wikiPageID
444789
dbo:wikiPageRevisionID
1073049818
dbo:wikiPageWikiLink
dbr:Roger_Schwarzschild dbr:Friederike_Moltmann dbr:Fred_Landman dbr:Paradox dbr:Abstract_entity dbr:Willard_Van_Orman_Quine dbr:Arity dbr:Variable_(mathematics) dbr:Generalized_quantifier dbr:Moltmann,_Friederike_(academic) dbr:Mathematical_logic dbr:Nonfirstorderizable dbr:Leibniz dbr:Set_theory dbr:Geach–Kaplan_sentence dbr:David_K._Lewis dbr:Second-order_logic dbc:Quantifier_(logic) dbr:Superplural_variable dbr:Sentence_(mathematical_logic) dbr:First-order_predicate_calculus dbr:Mathematics dbr:Foundations_of_mathematics dbr:Monadic_second-order_logic dbr:Monadic_logic dbr:Gottlob_Frege dbr:The_Principles_of_Mathematics dbr:Variadic_function dbr:Remko_Scha dbr:Peter_Lasersohn dbr:Godehard_Link dbr:George_Boolos dbr:Nominalism dbr:Bertrand_Russell dbr:Existential_commitment dbr:Peter_Simons_(academic) dbr:Barry_Smith_(academic_and_ontologist) dbr:Plural dbr:John_Stuart_Mill dbr:Problem_of_universals dbr:Adam_Morton dbr:Ernst_Schroeder
dbo:wikiPageExternalLink
n4:plural-reference-paper-2012.pdf n5:Nicolas-Semantics-for-plurals-Handout-0110.pdf n6:Nicolas-Mass-nouns-and-plural-logic-Revised-2.pdf n7:Linnebo-Nicolas-Superplurals.pdf n10:index.html n20:Nicolas-Mass-nouns-and-plural-logic-Revised-2.pdf n25:Linnebo-Nicolas-Superplurals.pdf
owl:sameAs
freebase:m.0298q2 wikidata:Q7205530 dbpedia-es:Cuantificación_plural dbpedia-fa:سورگیری_متکثر dbpedia-pt:Quantificação_plural n24:4tMN9
dbp:wikiPageUsesTemplate
dbt:Clarify dbt:ISBN dbt:JSTOR dbt:Isbn dbt:Reflist dbt:Cite_SEP dbt:Who dbt:Citation dbt:Main dbt:Cite_journal
dbo:abstract
In mathematics and logic, plural quantification is the theory that an individual variable x may take on plural, as well as singular, values. As well as substituting individual objects such as Alice, the number 1, the tallest building in London etc. for x, we may substitute both Alice and Bob, or all the numbers between 0 and 10, or all the buildings in London over 20 stories. The point of the theory is to give first-order logic the power of set theory, but without any "existential commitment" to such objects as sets. The classic expositions are Boolos 1984 and Lewis 1991. En lógica matemática, cuantificación plural es la teoría que establece que una variable individual x puede representar tanto valores plurales, como singulares. En ella no solo es posible reemplazar el valor de x por objetos individuales como Alicia, el número 1, el edificio más alto de Buenos Aires etc., sino que también es reemplazar juntos Alicia y Pedro, o todos los números del 0 al 10, o todos los edificios de Buenos Aires con más de 40 metros de altura. La teoría se centra en otorgarle a la lógica de primer orden el poder que posee la teoría de conjuntos, aunque sin ningún "" con objetos tales como conjuntos. Na matemática e na lógica, a quantificação plural é a teoria na qual uma variável individual x pode representar múltiplos objetos (plural), assim como objetos individuais (singular). Assim, da mesma forma que podemos substituir objetos como Alice, o número 1, ou a maior construção em Londres, por x, nós também podemos representar por x várias pessoas (ex: Alice e Bob), todos os números de 0 até 10, ou todas as construções em Londres com 20 andares ou mais. O objetivo desta teoria é fornecer à Lógica de primeira ordem característcas da teoria dos conjuntos, sem entretanto transformar os objetos em conjuntos. As exposições clássicas dessa teoria se devem a Boolos (1984) e a Lewis (1991).
gold:hypernym
dbr:Theory
prov:wasDerivedFrom
wikipedia-en:Plural_quantification?oldid=1073049818&ns=0
dbo:wikiPageLength
16278
foaf:isPrimaryTopicOf
wikipedia-en:Plural_quantification
Subject Item
dbr:George_Boolos
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Empty_set
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Plural
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:First-order_logic
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Second-order_logic
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Nonfirstorderizability
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Outline_of_logic
dbo:wikiPageWikiLink
dbr:Plural_quantification
Subject Item
dbr:Variably_polyadic_predicate
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
dbr:Variably_polyadic_relation
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
dbr:Anadic_predicate
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
dbr:Anadic_relation
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
dbr:Plural_logic
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
dbr:Plural_quantifier
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
dbr:Plural_reference
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
dbr:Multigrade_predicate
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
dbr:Multigrade_relation
dbo:wikiPageWikiLink
dbr:Plural_quantification
dbo:wikiPageRedirects
dbr:Plural_quantification
Subject Item
wikipedia-en:Plural_quantification
foaf:primaryTopic
dbr:Plural_quantification