This HTML5 document contains 60 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n19http://projecteuclid.org/euclid.kjm/
freebasehttp://rdf.freebase.com/ns/
n6http://math.stanford.edu/~conrad/papers/
dbpedia-fihttp://fi.dbpedia.org/resource/
n21https://stacks.math.columbia.edu/tag/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n17http://dbpedia.org/resource/Nlab:
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Masayoshi_Nagata
dbo:wikiPageWikiLink
dbr:Nagata's_compactification_theorem
dbp:knownFor
dbr:Nagata's_compactification_theorem
dbo:knownFor
dbr:Nagata's_compactification_theorem
Subject Item
dbr:Glossary_of_algebraic_geometry
dbo:wikiPageWikiLink
dbr:Nagata's_compactification_theorem
Subject Item
dbr:Smooth_completion
dbo:wikiPageWikiLink
dbr:Nagata's_compactification_theorem
Subject Item
dbr:Proper_morphism
dbo:wikiPageWikiLink
dbr:Nagata's_compactification_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Nagata's_compactification_theorem
Subject Item
dbr:Nagata's_compactification_theorem
rdfs:label
Nagata's compactification theorem
rdfs:comment
In algebraic geometry, Nagata's compactification theorem, introduced by Nagata , implies that every abstract variety can be embedded in a complete variety, and more generally shows that a separated and finite type morphism to a Noetherian scheme S can be factored into an open immersion followed by a proper morphism. , where is the extension by zero functor. One then shows the independence of the definition from the choice of compactification.
dcterms:subject
dbc:Theorems_in_algebraic_geometry
dbo:wikiPageID
37613671
dbo:wikiPageRevisionID
1112351355
dbo:wikiPageWikiLink
dbr:Coherent_sheaves dbr:Noetherian_scheme dbr:Étale_sheaf dbr:Inverse_image_functor dbr:Finite_morphism dbr:Proper_morphism dbr:Cohomology_with_compact_support dbc:Theorems_in_algebraic_geometry dbr:SGA_4 dbr:Stacks_Project dbr:Direct_image_with_compact_support dbr:Pierre_Deligne n17:pro-left+adjoint dbr:Valuation_(algebra) dbr:Algebraic_geometry dbr:Zariski–Riemann_space dbr:Abstract_variety dbr:Glossary_of_scheme_theory dbr:Complete_variety dbr:Compact_space dbr:Brian_Conrad
dbo:wikiPageExternalLink
n6:nagatafinal.pdf%7Cfirst=B%7Clast=Conrad%7Ctitle=Deligne's n19:1250524859 n19:1250524969 n21:0F3T n21:0F7H n21:0G4Z
owl:sameAs
dbpedia-fi:Nagatan_lause yago-res:Nagata's_compactification_theorem freebase:m.0nd3nq4 wikidata:Q11883897 n15:FAKi
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Harvtxt dbt:Harvs dbt:Citation
dbp:authorlink
Masayoshi Nagata
dbp:last
Nagata
dbp:year
1962 1963
dbo:abstract
In algebraic geometry, Nagata's compactification theorem, introduced by Nagata , implies that every abstract variety can be embedded in a complete variety, and more generally shows that a separated and finite type morphism to a Noetherian scheme S can be factored into an open immersion followed by a proper morphism. Nagata's original proof used the older terminology of Zariski–Riemann spaces and valuation theory, which sometimes made it hard to follow.Deligne showed, in unpublished notes expounded by Conrad, that Nagata's proof can be translated into scheme theory and that the condition that S is Noetherian can be replaced by the much weaker condition that S is quasi-compact and quasi-separated. gave another scheme-theoretic proof of Nagata's theorem. An important application of Nagata's theorem is in defining the analogue in algebraic geometry of cohomology with compact support, or more generally higher direct image functors with proper support. The idea is that given a compactifiable morphism one defines by choosing a factorization by an open immersion j and proper morphism p, and then setting , where is the extension by zero functor. One then shows the independence of the definition from the choice of compactification. In the context of étale sheaves, this idea was carried out by Deligne in SGA 4, Exposé XVII. In the context of coherent sheaves, the statements are more delicate since for an open immersion j, the inverse image functor does not usually admit a left adjoint. Nonetheless, exists as a , and Deligne was able to define the functor as valued in the pro-derived category of coherent sheaves.
prov:wasDerivedFrom
wikipedia-en:Nagata's_compactification_theorem?oldid=1112351355&ns=0
dbo:wikiPageLength
4054
foaf:isPrimaryTopicOf
wikipedia-en:Nagata's_compactification_theorem
Subject Item
dbr:Noetherian_scheme
dbo:wikiPageWikiLink
dbr:Nagata's_compactification_theorem
Subject Item
dbr:Nagata_compactification
dbo:wikiPageWikiLink
dbr:Nagata's_compactification_theorem
dbo:wikiPageRedirects
dbr:Nagata's_compactification_theorem
Subject Item
wikipedia-en:Nagata's_compactification_theorem
foaf:primaryTopic
dbr:Nagata's_compactification_theorem