This HTML5 document contains 65 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9http://dbpedia.org/resource/File:
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n6http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Focas_method
dbo:wikiPageWikiLink
dbr:Fokas_method
dbo:wikiPageRedirects
dbr:Fokas_method
Subject Item
dbr:Fokas_method
rdfs:label
Fokas method
rdfs:comment
The Fokas method, or unified transform, is an algorithmic procedure for analysing boundary value problems for linear partial differential equations and for an important class of nonlinear PDEs belonging to the so-called integrable systems. It is named after Greek mathematician Athanassios S. Fokas. Traditionally, linear boundary value problems are analysed using either integral transforms and infinite series, or by employing appropriate fundamental solutions.
foaf:depiction
n6:Figure_the_curve.png n6:Figure_the_countour1.png n6:Convergence_results_for_the_method_and_different2.jpg
dcterms:subject
dbc:Partial_differential_equations
dbo:wikiPageID
52147450
dbo:wikiPageRevisionID
1118833561
dbo:wikiPageWikiLink
dbr:Integral_transform n9:Convergence_results_for_the_method_and_different2.jpg dbr:Jordan's_lemma dbr:Sine_transform dbc:Partial_differential_equations dbr:Cosine_transform dbr:Neumann_boundary_condition dbr:Ehrenpreis'_fundamental_principle dbr:MATLAB dbr:Inverse_Fourier_transform dbr:Peter_Gustav_Lejeune_Dirichlet dbr:Dirichlet_problem dbr:Cauchy's_integral_theorem dbr:Neumania_papillator dbr:Dirichlet_boundary_condition dbr:Uniform_convergence dbr:Elliptic_partial_differential_equation dbr:Nonlinear_partial_differential_equation dbr:Convex_polygon dbr:Infinite_series dbr:Linear_partial_differential_equation dbr:Generalized_Dirichlet_distribution dbr:Analytic_function dbr:Helmholtz_equation dbr:Initial_and_boundary_conditions dbr:Bessel_function dbr:Athanassios_S._Fokas dbr:Numerical_computation dbr:Fourier_complex dbr:Numerically dbr:Laplace dbr:Heat_equation dbr:Legendre_polynomials dbr:Fourier_transform dbr:Robin_boundary_condition dbr:Gauss–Hermite_quadrature dbr:Algebraic_equation n9:Figure_the_curve.png
owl:sameAs
wikidata:Q48995968 n15:4Y9EN
dbp:wikiPageUsesTemplate
dbt:NumBlk dbt:EquationNote dbt:EquationRef dbt:Reflist
dbo:thumbnail
n6:Figure_the_curve.png?width=300
dbo:abstract
The Fokas method, or unified transform, is an algorithmic procedure for analysing boundary value problems for linear partial differential equations and for an important class of nonlinear PDEs belonging to the so-called integrable systems. It is named after Greek mathematician Athanassios S. Fokas. Traditionally, linear boundary value problems are analysed using either integral transforms and infinite series, or by employing appropriate fundamental solutions.
prov:wasDerivedFrom
wikipedia-en:Fokas_method?oldid=1118833561&ns=0
dbo:wikiPageLength
35618
foaf:isPrimaryTopicOf
wikipedia-en:Fokas_method
Subject Item
dbr:Athanassios_S._Fokas
dbo:wikiPageWikiLink
dbr:Fokas_method
dbp:knownFor
dbr:Fokas_method
dbo:knownFor
dbr:Fokas_method
Subject Item
dbr:Fokas_method_(unified_transform_method)
dbo:wikiPageWikiLink
dbr:Fokas_method
dbo:wikiPageRedirects
dbr:Fokas_method
Subject Item
wikipedia-en:Fokas_method
foaf:primaryTopic
dbr:Fokas_method