This HTML5 document contains 76 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
n10http://projecteuclid.org/euclid.bams/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:René_Maurice_Fréchet
dbo:wikiPageWikiLink
dbr:Differentiation_in_Fréchet_spaces
Subject Item
dbr:Gateaux_derivative
dbo:wikiPageWikiLink
dbr:Differentiation_in_Fréchet_spaces
Subject Item
dbr:Fréchet_manifold
dbo:wikiPageWikiLink
dbr:Differentiation_in_Fréchet_spaces
Subject Item
dbr:Differentiation_in_Fréchet_spaces
rdf:type
yago:Abstraction100002137 yago:Memory105760202 yago:Colligation105764197 yago:Attribute100024264 yago:WikicatGeneralizationsOfTheDerivative yago:Process105701363 yago:PsychologicalFeature100023100 yago:Cognition100023271 yago:Association105763916 yago:WikicatTopologicalVectorSpaces yago:BasicCognitiveProcess105701944 yago:Space100028651 yago:Generalization105774415
rdfs:label
Differentiation in Fréchet spaces
rdfs:comment
In mathematics, in particular in functional analysis and nonlinear analysis, it is possible to define the derivative of a function between two Fréchet spaces. This notion of differentiation, as it is Gateaux derivative between Fréchet spaces, is significantly weaker than the derivative in a Banach space, even between general topological vector spaces. Nevertheless, it is the weakest notion of differentiation for which many of the familiar theorems from calculus hold. In particular, the chain rule is true. With some additional constraints on the Fréchet spaces and functions involved, there is an analog of the inverse function theorem called the Nash–Moser inverse function theorem, having wide applications in nonlinear analysis and differential geometry.
dcterms:subject
dbc:Functions_and_mappings dbc:Banach_spaces dbc:Topological_vector_spaces dbc:Generalizations_of_the_derivative dbc:Euclidean_geometry dbc:Differential_calculus
dbo:wikiPageID
5480302
dbo:wikiPageRevisionID
1119696056
dbo:wikiPageWikiLink
dbr:Chain_rule dbr:Linearity dbr:Fréchet_manifold dbr:Fréchet_derivative dbr:Riemann_integral dbr:Calculus dbr:Nonlinear_analysis dbc:Differential_calculus dbr:Fréchet_space dbr:Derivative_(generalizations) dbc:Banach_spaces dbc:Functions_and_mappings dbr:Topological_vector_space dbr:Fundamental_theorem_of_calculus dbr:Convenient_analysis dbr:Continuous_(topology) dbr:Mathematics dbr:Inverse_function_theorem dbr:Nash–Moser_inverse_function_theorem dbr:Differential_geometry dbr:Banach_space dbr:Functional_analysis dbr:Gateaux_derivative dbr:Tangent_bundle dbc:Generalizations_of_the_derivative dbc:Euclidean_geometry dbr:Permutation dbr:Multilinear_form dbc:Topological_vector_spaces dbr:Manifold_(mathematics) dbr:Differential_topology dbr:Open_set
dbo:wikiPageExternalLink
n10:1183549049%7Cjournal=Bull.
owl:sameAs
wikidata:Q5275381 n15:4iTnv
dbp:wikiPageUsesTemplate
dbt:Annotated_link dbt:Main dbt:Functional_analysis dbt:Reflist dbt:Citation_needed dbt:Topological_vector_spaces dbt:Analysis_in_topological_vector_spaces dbt:Cite_journal
dbo:abstract
In mathematics, in particular in functional analysis and nonlinear analysis, it is possible to define the derivative of a function between two Fréchet spaces. This notion of differentiation, as it is Gateaux derivative between Fréchet spaces, is significantly weaker than the derivative in a Banach space, even between general topological vector spaces. Nevertheless, it is the weakest notion of differentiation for which many of the familiar theorems from calculus hold. In particular, the chain rule is true. With some additional constraints on the Fréchet spaces and functions involved, there is an analog of the inverse function theorem called the Nash–Moser inverse function theorem, having wide applications in nonlinear analysis and differential geometry.
prov:wasDerivedFrom
wikipedia-en:Differentiation_in_Fréchet_spaces?oldid=1119696056&ns=0
dbo:wikiPageLength
6221
foaf:isPrimaryTopicOf
wikipedia-en:Differentiation_in_Fréchet_spaces
Subject Item
dbr:Differentiation_in_Frechet_spaces
dbo:wikiPageWikiLink
dbr:Differentiation_in_Fréchet_spaces
dbo:wikiPageRedirects
dbr:Differentiation_in_Fréchet_spaces
Subject Item
wikipedia-en:Differentiation_in_Fréchet_spaces
foaf:primaryTopic
dbr:Differentiation_in_Fréchet_spaces