This HTML5 document contains 144 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
dbpedia-eshttp://es.dbpedia.org/resource/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n24http://www.scholarpedia.org/article/
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
n22https://www.mathi.uni-heidelberg.de/~walcher/teaching/sose16/geo_phys/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Rudolf_Haag
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Index_of_physics_articles_(C)
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Infraparticle
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Conformal_symmetry
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:An_Exceptionally_Simple_Theory_of_Everything
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Gauge_covariant_derivative
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Glossary_of_string_theory
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Sidney_Coleman
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Mass_gap
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Coleman-Mandula_theorem
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
dbo:wikiPageRedirects
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Haag–Łopuszański–Sohnius_theorem
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:List_of_Columbia_College_people
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Lochlainn_O'Raifeartaigh
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Super-Poincaré_algebra
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:No-go_theorem
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:List_of_Illinois_Institute_of_Technology_alumni
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Universal_enveloping_algebra
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Jeffrey_Mandula
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Coleman–Mandula_theorem
rdf:type
yago:Theorem106752293 yago:Proposition106750804 yago:WikicatTheoremsInQuantumPhysics yago:Communication100033020 yago:Abstraction100002137 yago:Statement106722453 yago:Message106598915
rdfs:label
Coleman–Mandula theorem Coleman-Mandula-Theorem Teorema de Coleman-Mandula 콜먼-맨듈라 정리 Teorema de Coleman–Mandula Teorema di Coleman-Mandula
rdfs:comment
양자장론에서 콜먼-맨듈라 정리(영어: Coleman–Mandula theorem)는 대부분의 이론에서는 각운동량과 4차원 운동량을 제외한 모든 연속적 보존량은 로런츠 스칼라라는 정리다. 여기서 "대부분의 이론"이란 질량 간극을 가지고 상호작용을 하는 로런츠 공변 이론이다. Das 1967 von Sidney Coleman und Jeffrey Mandula gefundene Coleman-Mandula-Theorem ist ein (engl.) der theoretischen Physik, das auf sehr allgemeinen Annahmen beruht (zum Beispiel Existenz und Nichttrivialität der S-Matrix, nichtentartetes Vakuum und keine masselosen Elementarteilchen). Es besagt, dass jede Lie-Algebra, welche die Poincaré-Gruppe und eine interne Symmetriegruppe enthält, ein direktes Produkt dieser beiden Gruppen sein muss. Eine externe (raum-zeitliche) Symmetrie kann also nur trivial mit einer internen Symmetrie kombiniert werden. Die tensoralen Symmetrien sind somit bereits mit den Generatoren der Poincaré-Gruppe maximal. Il teorema di Coleman–Mandula, prende il nome da Sidney Coleman and , è un "no-go theorem" in fisica teorica. Esso afferma che le sole quantità conservate a parte i generatori del gruppo di Poincaré, devono essere scalari di Lorentz. Il teorema Coleman–Mandula è uno dei principi di base su cui si basa la teoria della supersimmetria; in quanto si può affermare che i generatori di supersimmetria devono soddisfare delle relazioni di anticommutazione. El teorema de Coleman–Mandula (debido a Sidney Coleman y Jeffrey Mandula) es un teorema de imposibilidad en física teórica.​ Declara que "las simetrías espaciotemporales y las simetrías internas no pueden ser combinadas, salvo de manera trivial" en aquellas teorías de campo que cumplen ciertas suposiciones.​ En este caso, (que incluye las teorías que podemos considerar realistas), las únicas cantidades conservadas posibles son escalares de Lorentz. Na física teórica, o teorema de Coleman–Mandula é um teorema de impossibilidade e foi descoberto pelos físicos Sidney Coleman e Jeffrey Mandula. Ele estabelece que a única quantidade conservada de energia com um intervalo de massa numa teoria realista deve ser um . In theoretical physics, the Coleman–Mandula theorem is a no-go theorem stating that spacetime and internal symmetries can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as Lorentz scalars. Some notable exceptions to the no-go theorem are conformal symmetry and supersymmetry. It is named after Sidney Coleman and Jeffrey Mandula who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the Haag–Łopuszański–Sohnius theorem.
dcterms:subject
dbc:Supersymmetry dbc:Theorems_in_quantum_mechanics dbc:Quantum_field_theory
dbo:wikiPageID
1372610
dbo:wikiPageRevisionID
1124654858
dbo:wikiPageWikiLink
dbr:Supersymmetry dbr:Spontaneous_symmetry_breaking dbr:Classical_field_theory dbr:Analytic_function dbr:Haag–Łopuszański–Sohnius_theorem dbr:Direct_product_of_groups dbc:Supersymmetry dbr:Theoretical_physics dbr:Symmetry_(physics) dbr:Mass dbr:Commutator dbr:Rank_(linear_algebra) dbr:Charge_conservation dbr:Special_conformal_transformation dbr:Vector_meson dbr:String_theory dbr:Superconformal_algebra dbr:Eightfold_way_(physics) dbr:Baryon dbr:Homothety dbr:Quark dbr:Galilean_invariance dbr:Principle_of_locality dbr:Spacetime_symmetries dbr:Conformal_symmetry dbr:Flavour_(particle_physics) dbr:Energy dbr:Edward_Witten dbr:Scattering_amplitude dbr:Poincaré_group dbr:Thirring_model dbr:Position_and_momentum_space dbr:Hadron dbr:Pseudoscalar_meson dbr:S-matrix dbr:Theory_of_relativity dbr:Quantum_chromodynamics dbr:Massless_particle dbc:Theorems_in_quantum_mechanics dbr:Group_(mathematics) dbr:Tensor dbr:Sidney_Coleman dbr:Algebra_over_a_field dbr:Multiplet dbr:Eugene_Wigner dbr:Generator_(mathematics) dbr:Lie_superalgebra dbr:Super-Poincaré_algebra dbr:Discrete_symmetry dbr:Lorentz_transformation dbr:Kinematics dbr:Elastic_scattering dbr:Supercharge dbr:Hadron_spectroscopy dbr:Extended_supersymmetry dbr:Overdetermined_system dbr:Spin_(physics) dbr:Distribution_(mathematics) dbr:No-go_theorem dbr:Lie_group dbr:Lochlainn_O'Raifeartaigh dbr:Spinor dbr:De_Sitter_space dbr:Jeffrey_Mandula dbr:Tensor_product dbr:Quantum_group dbc:Quantum_field_theory dbr:Quantum_field_theory dbr:Lorentz_scalar dbr:Meson dbr:Lie_algebra dbr:Supergroup_(physics) dbr:Nuclear_physics dbr:Supersymmetry_algebra
dbo:wikiPageExternalLink
n22:ColemanMandula.pdf n24:Coleman-Mandula_theorem
owl:sameAs
dbpedia-pt:Teorema_de_Coleman–Mandula dbpedia-es:Teorema_de_Coleman-Mandula n15:4qvtQ dbpedia-it:Teorema_di_Coleman-Mandula dbpedia-ko:콜먼-맨듈라_정리 freebase:m.04xl5_ dbpedia-de:Coleman-Mandula-Theorem wikidata:Q671663
dbp:wikiPageUsesTemplate
dbt:Supersymmetry_topics dbt:Short_description dbt:Reflist
dbo:abstract
Das 1967 von Sidney Coleman und Jeffrey Mandula gefundene Coleman-Mandula-Theorem ist ein (engl.) der theoretischen Physik, das auf sehr allgemeinen Annahmen beruht (zum Beispiel Existenz und Nichttrivialität der S-Matrix, nichtentartetes Vakuum und keine masselosen Elementarteilchen). Es besagt, dass jede Lie-Algebra, welche die Poincaré-Gruppe und eine interne Symmetriegruppe enthält, ein direktes Produkt dieser beiden Gruppen sein muss. Eine externe (raum-zeitliche) Symmetrie kann also nur trivial mit einer internen Symmetrie kombiniert werden. Die tensoralen Symmetrien sind somit bereits mit den Generatoren der Poincaré-Gruppe maximal. Rudolf Haag, und konnten 1975 jedoch zeigen (Haag-Łopuszański-Sohnius-Theorem), dass die Hinzunahme von antikommutierenden Generatoren die einzig mögliche, nicht-triviale Erweiterung der zu einer sogenannten Superalgebra erlaubt (siehe auch Supersymmetrie). 양자장론에서 콜먼-맨듈라 정리(영어: Coleman–Mandula theorem)는 대부분의 이론에서는 각운동량과 4차원 운동량을 제외한 모든 연속적 보존량은 로런츠 스칼라라는 정리다. 여기서 "대부분의 이론"이란 질량 간극을 가지고 상호작용을 하는 로런츠 공변 이론이다. In theoretical physics, the Coleman–Mandula theorem is a no-go theorem stating that spacetime and internal symmetries can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as Lorentz scalars. Some notable exceptions to the no-go theorem are conformal symmetry and supersymmetry. It is named after Sidney Coleman and Jeffrey Mandula who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the Haag–Łopuszański–Sohnius theorem. El teorema de Coleman–Mandula (debido a Sidney Coleman y Jeffrey Mandula) es un teorema de imposibilidad en física teórica.​ Declara que "las simetrías espaciotemporales y las simetrías internas no pueden ser combinadas, salvo de manera trivial" en aquellas teorías de campo que cumplen ciertas suposiciones.​ En este caso, (que incluye las teorías que podemos considerar realistas), las únicas cantidades conservadas posibles son escalares de Lorentz. Na física teórica, o teorema de Coleman–Mandula é um teorema de impossibilidade e foi descoberto pelos físicos Sidney Coleman e Jeffrey Mandula. Ele estabelece que a única quantidade conservada de energia com um intervalo de massa numa teoria realista deve ser um . Il teorema di Coleman–Mandula, prende il nome da Sidney Coleman and , è un "no-go theorem" in fisica teorica. Esso afferma che le sole quantità conservate a parte i generatori del gruppo di Poincaré, devono essere scalari di Lorentz. Il teorema Coleman–Mandula è uno dei principi di base su cui si basa la teoria della supersimmetria; in quanto si può affermare che i generatori di supersimmetria devono soddisfare delle relazioni di anticommutazione.
gold:hypernym
dbr:Theorem
prov:wasDerivedFrom
wikipedia-en:Coleman–Mandula_theorem?oldid=1124654858&ns=0
dbo:wikiPageLength
12850
foaf:isPrimaryTopicOf
wikipedia-en:Coleman–Mandula_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Supersymmetry
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
dbr:Scientific_phenomena_named_after_people
dbo:wikiPageWikiLink
dbr:Coleman–Mandula_theorem
Subject Item
wikipedia-en:Coleman–Mandula_theorem
foaf:primaryTopic
dbr:Coleman–Mandula_theorem