An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module (i.e., a direct sum of simple modules.)

Property Value
dbo:abstract
  • Der Satz von Weyl, benannt nach Hermann Weyl, ist ein wichtiger Satz aus der Theorie der Lie-Algebren. Er besagt im Wesentlichen, dass man endlichdimensionale Darstellungen halbeinfacher Lie-Algebren aus irreduziblen zusammensetzen kann, sofern der Grundkörper algebraisch abgeschlossen ist und die Charakteristik 0 hat. (de)
  • In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module (i.e., a direct sum of simple modules.) (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 39330817 (xsd:integer)
dbo:wikiPageLength
  • 14711 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 996755843 (xsd:integer)
dbo:wikiPageWikiLink
dbp:mathStatement
  • Let be a semisimple finite-dimensional Lie algebra over a field of characteristic zero. # There exists a unique pair of elements in such that , is semisimple, is nilpotent and . # If is a finite-dimensional representation, then and , where denote the Jordan decomposition of the semisimple and nilpotent parts of the endomorphism . In short, the semisimple and nilpotent parts of an element of are well-defined and are determined independent of a faithful finite-dimensional representation. (en)
dbp:name
  • Proposition (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Der Satz von Weyl, benannt nach Hermann Weyl, ist ein wichtiger Satz aus der Theorie der Lie-Algebren. Er besagt im Wesentlichen, dass man endlichdimensionale Darstellungen halbeinfacher Lie-Algebren aus irreduziblen zusammensetzen kann, sofern der Grundkörper algebraisch abgeschlossen ist und die Charakteristik 0 hat. (de)
  • In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module (i.e., a direct sum of simple modules.) (en)
rdfs:label
  • Satz von Weyl (Lie-Algebra) (de)
  • Weyl's theorem on complete reducibility (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License