An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras.

Property Value
dbo:abstract
  • In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras. These objects were introduced by Böhm, Nill and Szlachányi. The first motivations for studying them came from quantum field theory and operator algebras. Weak Hopf algebras have quite interesting representation theory; in particular modules over a semisimple finite weak Hopf algebra is a fusion category (which is a monoidal category with extra properties). It was also shown by Etingof, Nikshych and Ostrik that any fusion category is equivalent to a category of modules over a weak Hopf algebra. (en)
dbo:wikiPageID
  • 33826555 (xsd:integer)
dbo:wikiPageLength
  • 6951 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1049259191 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras. (en)
rdfs:label
  • Weak Hopf algebra (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License